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When a charged particle moves along a charged wall in a polar fluid, it experiences an
electroviscous lift force normal to the surface and an electroviscous drag, superimposed
on the viscous drag, parallel to the surface. Here a theoretical analysis is presented
to determine the electroviscous drag on a charged spherical particle surrounded by
a thin electrical double layer near a charged plane wall, when the particle translates
parallel to the wall without rotation, in a symmetric electrolyte solution at rest. The
electroviscous (electro-hydrodynamic) forces, arising from the coupling between the
electrical and hydrodynamic equations, are determined as a solution of three partial
differential equations, for electroviscous ion concentration (perturbed ion clouds),
electroviscous potential (perturbed electric potential) and electroviscous or electro-
hydrodynamic flow field (perturbed flow field). The problem was previously solved
for small gap widths and low Peclet numbers in the inner region around the gap
between the sphere and the wall, using lubrication theory. Here the restriction on
the particle–wall distances is removed, and an analytical and numerical solution is
obtained valid for the whole domain of interest. For large sphere–wall separations
the solution approaches that for the electroviscous drag on an isolated sphere in
an unbounded fluid. For small particle–wall distances it differs from that obtained
by the use of lubrication theory, showing that lubrication theory is inadequate for
electroviscous problems. The analytical results are in complete agreement with the
full numerical calculations. For small particle–wall distances a model is given which
provides both physical insight and an easy way to calculate the force with high
precision.

1. Introduction
The motion of a charged sphere parallel to a charged plane wall in a fluid is a

fundamental problem in electrokinetics. From a practical point of view, it is important
in determining elution times in fractionation techniques that rely on particle–wall
interactions, such as field flow fractionation and hydrodynamic chromatography. It
also plays a role in the cleaning of flow cells and instrumentation using such cells,
as it determines the effluent time of impurities near the wall. It also is important for
sphere–wall interactions in flowing liquids.
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Many attempts have been made in the past to determine the relation between the
motion of charged particles, the applied electric field and other relevant physical
quantities. Helmholtz (1879) was the first to pay attention to this problem. He made
a theoretical study of electrokinetic phenomena in general. He presented a qualitative
discussion of cataphoresis, now commonly called electrophoresis, later improved upon
by Smoluchowski (1914). Subsequently, he formulated the electro-osmotic velocity in
a single capillary upon imposing an external electric field on it. He also presented a
relation for the streaming potential (electroviscous potential) arising from the motion
of the electrolyte in a simple capillary, upon imposing a pressure drop along it.
Smoluchowski (1914) was the first to consider the primary electroviscous effect, which
is the increase in viscosity due to the presence of electrical double layers around
charged particles. Krasny-Ergen (1936) calculated the viscous dissipation in the same
limit to obtain a result similar to the result of Smoluchowski, but differing from it by
a numerical factor. Booth (1950) presented an analysis of the primary electroviscous
effect for spherical particles with an arbitrary thick charged cloud in the limits of
weak flow and weak electrical effects, which leads to a modification of the Einstein
coefficient characterizing viscosity in the dilute limit. Russel (1978) extended the
theory to flows with arbitrary strength. Lever (1979) considered the problem with the
same assumption but for a large deformation of the charged cloud. These theories
assumed that the fluid motion around the sphere was changed only slightly by the
presence of the charged ion cloud. Sherwood (1980) removed this restriction. Hinch &
Sherwood (1983) extended and complemented Sherwood’s asymptotic results for high
surface potential and high Hartmann numbers. All these theories were developed for
spheres in an unbounded fluid. Effect of boundaries was studied by Keh & Anderson
(1985), who considered the effects of the proximity of rigid charged boundaries on
the electrophoretic motion of a charged sphere for three individual cases: a single flat
wall, two parallel walls, and a circular tube for the limiting case of a thin double layer.
Using the method of reflections, they determined the particle velocity as a function of
distance from the wall. The deviations from the classical Smoluchowski equation were
due to three effects: first, a charge on the boundary causes electro-osmotic flow of the
suspending fluid because of the external electric field; second, the boundary alters the
interaction between the particle and applied electric field; and, third, the boundary
enhances viscous retardation of the particle as it tries to move in response to the
applied field. They observed that the effect of the charged boundary on electrophoretic
velocity is of the order of third power in the ratio of the particle radius to the distance
of the particle centre from the wall for all boundary configurations, rather than order
first power of this ratio, which applies to the sedimentation of an uncharged particle
parallel to an uncharged wall. The theory applies only to infinitesimally thin double
layers and large particle–wall distances; it approaches Smoluchowski’s theory for large
distances. The theory was extended by Sellier (2001) to particles of arbitrary shapes.
He found that under certain conditions for an electric field applied parallel to the
wall, the particle could move perpendicular to the wall, an example of electrokinetic
lift.

Ohshima et al. (1984) derived an expression for the electrokinetic force
superimposed on the Stokes drag in the sedimentation of a charged sphere in an
unbounded liquid. They considered a charged sphere of radius a, translating with
hydrodynamic velocity U in an electrolyte containing two ionic species with valency
zi , diffusivity Di and number density ci , where subscripts i = 1, 2 refer to counter-ions
and co-ions, respectively. They derived an analytical expression for the sedimentation
velocity (electro-hydrodynamic velocity superimposed on hydrodynamic velocity) of
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Figure 1. A charged spherical particle translating parallel to a charged plane wall.

the particle surrounded by a thin double layer, i.e. for large κa (κ being the reciprocal
double-layer thickness), in terms of the particle ζ -potential ζP and double-layer
thickness, ∈ (= 1/κa), from which the electro-hydrodynamic force F ∗ superimposed
on the hydrodynamic drag is determined as

F ∗ = − 48π(εrε0)
2(kT )3

e4
(
c1z

2
1 + c2z

2
2

)
a

[
G2

P

z2
1D1

+
H 2

P

z2
2D2

]
U + O(∈5). (1.1)

Here εrε0 is the permittivity of the medium, kT is the thermal energy, e is the charge
of a proton and Gp and Hp are functions of particle ζ -potential, defined by

GP = ln
1 + exp

(−ze

2kT
ζP

)
2

, HP = ln

1 + exp

(
+ze

2kT
ζP

)
2

. (1.2)

Though it was not mentioned by the authors, Cox (1997) pointed out that the above
theory is valid for low Peclet numbers, Pe, based on the diffusivity of the counter-ions
defined by

Pe =
aU

D1

. (1.3)

The problem of the electroviscous sphere–wall interactions with thin double layers
was solved recently by Tabatabaei, van de Ven & Rey (2006b) for the inner region,
the region in the neighbourhood of the nearby contact point by the use of lubrication
theory, for low and intermediate Peclet numbers, Pe � δ−1/2, for the case of small
particle–wall distances δ � 1, where δ is defined by

δ =
h

a
(1.4)

(h being the clearance between particle and wall as shown in figure 1). They considered
translation with velocity U and rotation with angular velocity Ω of a spherical particle
of radius a in a symmetric electrolyte of number ion bulk concentration, c∞, with
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two ion species of valency z1 = z2 = z. For the tangential electroviscous (electro-
hydrodynamic) drag, F ∗

x , they obtained

F ∗
x = − 8π

5

(εrε0)
2(kT )3

(ze)4c∞

a

h2

×
{

1

5

[
(7GP + 2GW )

(GP + GW )

D1

+ (7HP + 2HW )
(HP + HW )

D2

]
(U + aΩ)

−
[
(α1GP + α2GW )

(GP − GW )

D1

+ (α1HP + α2HW )
(HP − HW )

D2

]
(U − aΩ)

}
,

(1.5)

in which α1 = 10.80625 . . . and α2 = 4.94467 . . . , (GP , HP ) are functions of the
particle ζ -potential, ζP , defined by (1.2) and (GW, HW ) are similarly functions of the
wall ζ -potential, ζW . They may be written as

Gi = ln
1 + exp

(−ze

2kT
ζi

)
2

, Hi = ln

1 + exp

(
+ze

2kT
ζi

)
2

, i = (P, W ). (1.6)

(Note that when reviewing the inner solution by Tabatabaei et al. (2006b), a small
error was found in the calculation of the coefficients α1 and α2. The above formula is
based on the revised coefficients.) The change in the drag, compared with the purely
hydrodynamic drag, is caused by a tangential electroviscous flow arising from the
coupling between electrostatics and hydrodynamics, which modifies the hydrodynamic
stress exerted on the sphere.

In this paper, the restriction on particle–wall distances is removed. A semi-analytical
expression is obtained as a summation of an infinite series which is evaluated
numerically, valid for the whole domain of interest for low Peclet number defined
by (1.3). One of the purposes of this study is to investigate the validity of the inner
region solution by the use of lubrication theory, which is extensively applied for the
calculation of electroviscous problems without justification (Warszynski & van de
Ven 1991, 2000; Cox’s solution in Wu, Warszynski & van de Ven 1996, Tabatabaei,
van de Ven & Rey 2006a,b). To check the accuracy of the huge analytical calculations,
a numerical solution for the problem is also performed by the method of finite-
difference approximation in a bipolar coordinate system. The numerical calculations
are programmed in MATLAB; an electronic copy can be provided upon request.

2. Problem statement
Consider an electrically charged spherical particle P translating (without rotation)

in an electrolyte solution parallel to a stationary charged plane wall W with velocity
U, as shown schematically in figure 1. The thickness of the electrical double layer
around the sphere and wall is assumed to be much smaller than either the particle
radius, a, or the clearance between the sphere and the wall, h, whichever is the
smaller. Therefore, we do not consider the case when double layers overlap. The
liquid is assumed to contain a symmetric electrolyte with two species of ions with
charges +ze and −ze. The concentration of the counter-ions is denoted by c1 and
that of the co-ions by c2. The zeta-potential of the sphere is ζp and that of the wall ζw .

The (x, y, z) coordinates with unit base vectors (ix, iy, i z) constitute a right-handed
Cartesian coordinate system having their origin on the wall, defined by z = 0. The z-
axis passes through the sphere centre, whose coordinates are (x = 0, y = 0, z = a+h).
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The sphere is assumed to be translating with velocity u = (U, 0, 0) in the electrolyte
at rest (see figure 1). Associated with the Cartesian coordinates is a dimensionless
cylindrical polar coordinate system (ρ̃, θ, z̃) with unit base vectors (iρ, i θ , i z) and a
bipolar coordinate system (ξ, θ, η) with the unit base vectors (i ξ , i θ , iη) and with the
transformation function (for description of the bipolar coordinate system, see for
example Happel & Brenner 1965)

ρ̃ =
c sin η

cosh ξ − cos η
, z̃ =

c sinh ξ

cosh ξ − cos η
, θ = θ, (2.1a)

where for sphere–wall problems, the range of coordinates is determined by

0 � ξ � α, 0 � η � π, 0 � θ � 2π, (2.1b)

in which c (the geometry constant) and α are defined by

c = sinh α, α = ln
(

1 + δ +
√

(1 + δ)2 − 1
)

, δ =
h

a
. (2.2a)

The metric coefficients of this coordinate system (Hξ, Hη, Hθ ) are determined by

Hξ = Hη =
cosh ξ − cos η

c
, Hθ =

cosh ξ − cos η

c sin η
. (2.2b)

The unit vector normal and outward to the wall surface (nW ) is i ξ and to the sphere
surface (nP ) is −i ξ . In this coordinate system, the sphere is defined by ξ = α, the plane
by ξ = 0, the origin by (ξ = 0, η = π) and infinity by (ξ = 0, η = 0) (cf. figure 2).

The domain of interest is divided into discrete points (cf. figure 2) with the interval
hξ on the ξ -coordinate and hη on the η-coordinate, defined by

hξ =
α

K
, hη =

π

L
, (2.3)

in which K is the number of intervals on the ξ -coordinate, and L is the number of
intervals on the η-coordinate. For each point the dependent variables and/or their
derivatives are determined both numerically and semi-analytically (as a summation
of an infinite series which is evaluated numerically).

We use variables made dimensionless by the length scale a, characteristic velocity
U and the characteristic ion concentrations c∞, the ion bulk concentration of either
species. The dimensionless parameters (denoted by a tilde) are then defined by

r = a r̃, u = U ũ, p =
µU

a
p̃, ci = c∞c̃i , F∗ = aµU F̃

∗
, (2.4)

in which r is the position vector, p is the pressure, µ is the viscosity of the liquid, ci

is the concentration of ions of type i, c∞ is the value of ci at distances far from the
solid surfaces where the effect of the electroviscous phenomena vanishes, and F∗ is
the electroviscous force experienced by the particle.

By translating the coordinate systems with velocity ix , the problem reduces to
a steady state one in which the undisturbed fluid and wall translate with velocity
−ix , i.e. the hydrodynamic field and the electric field at position r relative to the
moving coordinates remain unaltered during the motion of particle P, resulting in
time-independent electro-hydrodynamic equations. Thus, the governing equations for
steady state, in dimensionless form, are

(i) the creeping flow equation (in the presence of the electric body forces induced
by the charged surfaces):

∇̃2ũ − ∇̃p̃ = λρ̃c∇̃ψ̃, (2.5)
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Figure 2. Distribution of nodes (1–124) in the bipolar coordinate system (ξ, η, θ ) on the plane
θ = 0 for K = 3, L = 30 (K is the number of intervals on ξ -coordinate and L is the number
of intervals on η-coordinate).

in which ρ̃c is the charge density of the liquid, ψ̃ is the dimensionless electrical
potential and λ is a dimensionless parameter, measuring the relative importance of
the electrical body forces to the hydrodynamic forces. These are defined by

ρ̃c = 1
2
(c̃1 − c̃2), λ =

2c∞akT

µU
,

↔
ψ =

ze

kT
ψ; (2.6)

(ii) the continuity equation

∇̃ · ũ = 0; (2.7)

(iii) the Poisson equation (relating liquid charge density and electrical potential
distribution)

∈2 ∇̃2ψ̃ = −ρ̃c, (2.8)

in which ∈ is the dimensionless double-layer thickness parameter, for a symmetric
electrolyte defined by

∈ =
1

κa
=

√
(εrε0)(kT )

2a2(ze)2c∞
; (2.9)
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(iv) the convective diffusion equations for counter-ions and co-ions, respectively,

∇̃ ·
{

∇̃c̃1 + c̃1∇̃ψ̃ − Pec̃1 ũ} = 0, (2.10)

∇̃ ·
{

∇̃c̃2 − c̃2∇̃ψ̃ − SPec̃2 ũ} = 0, (2.11)

in which Pe is a Peclet number, defined by (1.3), here assumed to be much smaller
than unity and S is the ratio of diffusivity of counter-ions, D1, to that of co-ions, D2,

S =
D1

D2

. (2.12)

The boundary conditions for these equations at infinity are

ψ̃ = 0, c̃1 = c̃2 = 1, ũ = −ix (2.13)

and at the sphere and wall surface we apply the no-slip boundary condition, as well
as the no-penetration boundary condition, with nJ being the normal vector to the
surface SJ , directed into the fluid:

nJ · {∇̃c̃1 + c̃1∇̃ψ̃} = 0, J = (W, P ),

nJ · {∇̃c̃2 − c̃2∇̃ψ̃} = 0.

}
(2.14)

Therefore, it is assumed that ions of either species on reaching the solid surfaces do
not give up their charges or in anyway react with the surfaces. In addition, ψ̃ = ψ̃P

on the particle P and ψ̃ = ψ̃W on the wall W, where

ψ̃P =
ze

kT
ζP , ψ̃W =

ze

kT
ζW . (2.15)

It is also assumed that the ζ -potentials of the particle and wall remain constant
during the electro-hydrodynamic (electroviscous) phenomena. The above differential
equations and boundary conditions constitute the standard electrokinetic theory.
The problem can be decomposed into three parts: a purely hydrodynamic part,
a purely electric part and an electroviscous (or electro-hydrodynamic) part, which
arises from the coupling between hydrodynamics and electrostatics. The solution
of the purely hydrodynamic problem is known (O’Neill 1964; O’Neill & Stewartson
1967; Tabatabaei 2003). The solution of the purely electrostatic problem is also known
(Cox 1997; Tabatabaei 2003). The purely electrostatic force acting between a particle
and the wall is in the direction normal to the wall, and is exponentially small for a
thin double layer. To obtain the electroviscous (electro-hydrodynamic) equations, we
may write

ũ = ũh + ũ∗, p̃ = p̃h + p̃e + p̃∗,

c̃1 = c̃1e + c̃∗
1, c̃2 = c̃2e + c̃∗

2,

ψ̃ = ψ̃e + ψ̃∗, ρ̃c = ρ̃e + ρ̃∗.

⎫⎪⎬
⎪⎭ (2.16)

The subscripts ‘h’ and ‘e’ denote the solution of the purely hydrodynamic and
electric problems, respectively. The terms with an asterisk denote the electroviscous
coupling terms. It was found that for thin double layers, the perturbed ion clouds
(electroviscous ions concentration) and potential appear at order ∈2 and the electro-
hydrodynamic (electroviscous flow field) at order ∈4 (Cox 1997), that is

c̃∗
i = ∈2 c̃∗

i2+ ∈3 c̃∗
i3 + · · · , ρ̃∗ = ∈2 ρ̃∗

2+ ∈3 ρ̃∗
3 + · · · , ψ̃∗ = ∈2 ψ̃∗

2+ ∈3 ψ̃∗
3 + · · · ,

(2.17)

ũ∗ = ∈4 ũ∗
4 + · · · , p̃∗ = ∈4 p̃∗

4 + · · · , (2.18)
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and ρ̃∗
2 = 0, which means c̃∗

12 = c̃∗
22, i.e. the electroviscous ion concentration at the

lowest order is the same for both counter-ions and co-ions. Hence, to simplify the
notation, we write c̃∗

i2 as c̃∗
2 and refer to it as the electroviscous ion concentration

(perturbed electron clouds). Similarly, we refer to ψ̃∗
2 as the electroviscous potential

(perturbed electric potential) and to (ũ∗
4, p̃∗

4) as the electroviscous flow field (perturbed
flow field). Differential equations for c̃∗

2, ψ̃∗
2 , and (ũ∗

4, p̃∗
4) with the corresponding

boundary conditions (BCs) for the outside of the diffuse double layer have been
derived by Cox (1997). As shown by Cox (1997), the dominant contributions to
the electroviscous forces arise from ũ∗

4 and p̃∗
4. Thus, the first-order correction to

the hydrodynamic drag force on a charged particle near a wall arises from the
hydrodynamic stress caused by the electroviscous disturbance flow (ũ∗

4, p̃∗
4). However,

because of the Lorentz reciprocal theorem, we do not have to solve for the flow
field (ũ∗

4, p̃∗
4) explicitly, and the electroviscous (electro-hydrodynamic) force can be

expressed in terms of ψ̃∗
2 and c̃∗

2 by the use of the hydrodynamic solution of the particle
motion with unit velocity, parallel to the direction of the force under consideration. In
the governing equations for c̃∗

2 and ψ̃∗
2 , only the purely hydrodynamic velocity enters

and we will subsequently drop all indexes in the purely hydrodynamic equations.

3. Hydrodynamics
Because the solutions to the equations of motion for the purely hydrodynamic

problem (hydrodynamics for the case of an uncharged particle and uncharged wall)
are needed to solve the electroviscous (electro-hydrodynamic) equations, we provide
a brief summary of these solutions. The purely hydrodynamic equations are assumed
to be the Stokes equations:

∇̃2ũ − ∇̃p̃ = 0, (3.1)

∇̃ · ũ = 0. (3.2)

The flow field may be written in terms of the to be determined auxiliary functions
Q1, U2, Uo and W1, slightly modified by letting the wall and fluid translate with
velocity –ix (instead of moving the sphere) (O’Neill 1964; Dean & O’Neill 1963):

p̃ =
Q1

c
cos θ, (3.3)

ũρ =
1

2

[
ρ̃

c
Q1 + (U2 + U0 − 2)

]
cos θ, (3.4)

ũθ = 1
2
(U2 − U0 + 2) sin θ, (3.5)

ũz =
1

2

(
z̃

c
Q1 + 2W1

)
cos θ. (3.6)

Then, the corresponding boundary conditions on the sphere surface are

ρ̃

c
Q1 + (U2 + U0) = 2, on ξ = α, (3.7)

U2 − U0 = −2, on ξ = α, (3.8)

z̃

c
Q1 + 2W1 = 0, on ξ = α, (3.9)



368 S. M. Tabatabaei and T. G. M. van de Ven

and on the wall and at infinity:

ρ̃

c
Q1 + (U2 + U0) = 0, on ξ = 0, (3.10)

U2 − U0 = 0, on ξ = 0, (3.11)

z̃

c
Q1 + 2W1 = 0, on ξ = 0. (3.12)

Introducing (3.3)–(3.6) into the momentum equation (3.1) results in

L2
mΦ =

∂2Φ

∂ρ̃2
+

1

ρ̃

∂Φ

∂ρ̃
− m2Φ

ρ̃2
+

∂2Φ

∂z̃2
= 0, (3.13)

where Φ = Q1, U2, U0 or W1 are the auxiliary functions given below, and where m is
equal to the corresponding index, that is m = 1 for Q1 and W1, m = 2 for U2 and
m = 0 for U0. The solution of (3.13) is given by Jeffery (1912) as

W1 = (cosh ξ − µ)1/2 sin η

∞∑
n=1

[
An sinh

(
n +

1

2

)
ξ

]
P ′

n(µ), (3.14)

Q1 = (cosh ξ−µ)1/2 sin η

∞∑
n=1

[
Bn cosh

(
n +

1

2

)
ξ + Cn sinh

(
n +

1

2

)
ξ

]
P ′

n(µ), (3.15)

U0 = (cosh ξ − µ)1/2

∞∑
n=0

[
Dn cosh

(
n +

1

2

)
ξ + En sinh

(
n +

1

2

)
ξ

]
Pn(µ), (3.16)

U2 = (cosh ξ − µ)1/2 sin2 η

∞∑
n=2

[
Fn cosh

(
n +

1

2

)
ξ + Gn sinh

(
n +

1

2

)
ξ

]
P ′′

n (µ),

(3.17)

in which n are integers, µ = cosη, Pn is the Legendre polynomial of degree n, and P
′
n

and P ′′
n are its first and second derivatives with respect to µ. For translation of the

particle, the coefficients A, B, C, D, E, F and G in (3.14)–(3.17) have been determined
by O’Neill (1964), upon imposing the relevant boundary conditions and applying the
continuity equation; details of their calculation are given by Tabatabaei (2003). These
coefficients are given in Appendix B by relations (B 1)–(B 8). Thus, if we write

ũρ = Vρ cos θ, ũθ = Vθ sin θ, ũz = Vz cos θ,

ũξ = Vξ cos θ, ũη = Vη cos θ,

}
(3.18)

the bipolar components of the velocity in the plane θ = 0, namely (Vξ , Vη), may be
determined by the help of the relationships

Vξ =
− sinh ξ sin η

cosh ξ − cos η
Vρ +

1 − cosh ξ cos η

cosh ξ − cos η
Vz, (3.19)

Vη =
cosh ξ cos η − 1

cosh ξ − cos η
Vρ +

− sinh ξ sin η

cosh ξ − cos η
Vz, (3.20)

from which the steady-state components of the velocity (Vξ , Vθ , Vη) are determined.
They are given in Appendix A by relations (A 9)–(A 11).
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4. Perturbed ion clouds
4.1. Equation for electroviscous ion concentration

The equation and boundary conditions for the electroviscous ion concentration
(perturbed ion clouds) outside the diffuse double layer have been derived by Cox
(1997)(see (9.6a,b,e,d )). The steady-state version of these may be written in the bipolar
coordinate system as

(cosh ξ − cos η)

(
∂2c̃∗

2

∂ξ 2
+

∂2c̃∗
2

∂η2
+

1

sin2 η

∂2c̃∗
2

∂θ2

)
−

(
1 + S

2
cPeũξ + sinh ξ

)
∂c̃∗

2

∂ξ

−
(

1 + S

2
cPeũη +

cosh ξ cos η − 1

sin η

)
∂c̃∗

2

∂η
− 1 + S

2 sin η
cPeũθ

∂c̃∗
2

∂θ
= 0, (4.1)

in which S is defined by (2.12) and c by (2.2a), with boundary conditions on the solid
surfaces (just outside the double layer)

∂c̃∗
2

∂ξ

∣∣∣∣SJ
= PeFcJ (cosh ξ − cos η)

∂

∂ξ

[
(cosh ξ − cos η)

∂

∂ξ

]
ũξ , J = (P, W ), (4.2)

in which FcP and FcW are defined by

FcJ =
1

2D2

[
(D2 − D1)ψ̃J − 4(D2 + D1) ln

(
cosh

ψ̃J

4

)]
, J = (P, W ). (4.3)

This perturbed ions cloud vanishes at far distances from the solid surfaces since it
is too far from the origin of the problem (the diffuse double layer) to be affected.
Therefore, the boundary condition at infinity may be written as

c̃∗
2 → 0 as (ξ, η) → 0. (4.4)

For low Pe, we may expand c̃∗
2 as

c̃∗
2 = Pe c̃21 + Pe2c̃22 + · · · . (4.5)

The terms containing odd powers in Pe contribute to the tangential component of
the force and those of even powers in Pe to the normal component (Tabatabaei et al.
2006a,b). Thus, for the tangential component, at the lowest order, we need to solve
for c̃21, which satisfies[
(cosh ξ− cos η)

(
∂2

∂ξ 2
+

∂2

∂η2
+

1

sin2 η

∂2

∂θ2

)
− sinh ξ

∂

∂ξ
+

cosh ξ cos η − 1

sin η

∂

∂η

]
c̃21 = 0,

(4.6)
with boundary conditions

∂c̃21

∂ξ
= FcJ (cosh ξ − cos η)

∂

∂ξ

[
(cosh ξ − cos η)

∂

∂ξ

]
ũξ on SJ , J = (P, W ), (4.7)

c̃21 → 0, as (ξ, η) → 0. (4.8)

Because of symmetry properties, if we define

c̃21 = C21 cos θ, uξ = Vξ cos θ, (4.9)

C21 satisfies[
(cosh ξ − cos η)

(
∂2

∂ξ 2
+

∂2

∂η2
− 1

sin2 η

)
− sinh ξ

∂

∂ξ
+

cosh ξ cos η − 1

sin η

∂

∂η

]
C21 = 0

(4.10)
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with boundary conditions

∂C21

∂ξ
= FcP (cosh ξ − cos η)

∂

∂ξ

[
(cosh ξ − cos η)

∂

∂ξ

]
Vξ on ξ = α, (4.11)

∂C21

∂ξ
= FcW (cosh ξ − cos η)

∂

∂ξ

[
(cosh ξ − cos η)

∂

∂ξ

]
Vξ on ξ = 0, (4.12)

C21 → 0, as (ξ, η) → 0. (4.13)

4.2. Analytical solution at order Pe

If we write down (3.13) in the bipolar coordinate system, we see that the electroviscous
ion concentration at order Pe, C21, given by (4.10), satisfies the same equation as that
given by (3.13) with m = 1, so that its solution is

C21 = (cosh ξ − µ)1/2 sin η

∞∑
n=1

[
In cosh

(
n +

1

2

)
ξ + Jn sinh

(
n +

1

2

)
ξ

]
P ′

n(µ). (4.14)

The sets of constants In and Jn are determined upon imposing the boundary conditions
on the solid surfaces.

The derivative of the solution (4.14), with respect to ξ , is

∂C21

∂ξ
= sin η

{
1

2
sinh ξ (cosh ξ − µ)−1/2

∞∑
1

[
In cosh

(
n+

1

2

)
ξ + Jn sinh

(
n+

1

2

)
ξ

]
P ′

n

+ (cosh ξ − µ)1/2

∞∑
n=1

(
n +

1

2

) [
In sinh

(
n +

1

2

)
ξ + Jn cosh

(
n +

1

2

)
ξ

]
P ′

n

}
,

(4.15)

the value of which evaluated on the wall (ξ = 0) results in

∂C21

∂ξ

∣∣∣∣ξ=0 = sin η(1 − µ)1/2
∞∑

n=1

(
n +

1

2

)
JnP

′
n, (4.16)

from which and upon the use of boundary condition (4.12), the set of Jn is determined.
In boundary condition (4.12), Vξ is given by (A 9) in Appendix A. It may be

expressed as

Vξ = −sin η

2

[
(cosh ξ − µ)−1/2M − 2 sinh ξ (cosh ξ − µ)−1

]
(4.17)

in which the parameter M is defined by (B 1) in Appendix B. From this, boundary
condition (4.12) may be written as

∂C21

∂ξ

∣∣∣∣ξ=0 = − FcW sin η

2c

{
N + (cosh ξ − µ)−3/2

[
1

4
sinh2 ξM

]

+ (cosh ξ − µ)−1/2

[
−1

2
cosh ξM

]
+ (cosh ξ − µ)1/2[S + 2T + O]

}
|ξ=0. (4.18)

The functions M, N, S, T and O are defined by (B 1), (B 2), (B 3) and (B 4) or, in
revised forms, by (B 9), (B 10), (B 11) and (B 12) in Appendix B. Letting ξ = 0,
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boundary condition (4.18) is evaluated on the wall as

∂C21

∂ξ

∣∣∣∣ξ=0 = − FcW

2c
sin η(1−µ)1/2

∞∑
1

[(n + 2)Cn+1 + (n − 1)Cn−1 − En+1 + En−1

+ (n + 2)(n + 3)Gn+1 − (n − 2)(n − 1)Gn−1] P ′
n. (4.19)

Now, in view of (4.16) and (4.19) the set of Jn is determined:

Jn = − FcW

c

1

2n + 1
[(n + 2)Cn+1 + (n − 1)Cn−1 − En+1 + En−1

+ (n + 2)(n + 3)Gn+1 − (n − 2)(n − 1)Gn−1] , n � 1 (4.20)

The other set of constants in the solution (4.15), namely In, is determined upon
imposing the boundary condition on the sphere surface, given by (4.11), which
requires much more calculation in order to equate it with that deduced from the
solution (4.14), given by (4.15), evaluated on ξ = α. Details are provided in Appendix
B; the result is

(n − 2)(n − 1)

2n − 1
sinh

(
n − 3

2

)
αIn−2

− (n − 1)

[
sinhα

2n − 1
cosh

(
n − 1

2

)
α + 2 coshα sinh

(
n − 1

2

)
α

]
In−1

+

{
1

2
sinh 2α cosh

(
n +

1

2

)
α +

[
(2n + 1) cosh2 α +

(n + 1)(n − 1)

2n − 1

+
n(n + 2)

2n + 3

]
sinh

(
n +

1

2

)
α

}
In

− (n + 2)

[
sinhα

2n + 3
cosh

(
n +

3

2

)
α + 2 coshα sinh

(
n +

3

2

)
α

]
In+1

+
(n + 3)(n + 2)

2n + 3
sinh

(
n +

5

2

)
αIn+2 = −χn − FcP

c
[βn

+ γn + τ1n + τ2n + τ3n + ω1n + ω2n + ω3n + ω4n + ω5n + ω6n]ξ=α, (4.21)

in which n � 1. The sets of βn, χn, γn, τ1n, τ2n, τ3n, ω1n, ω2n, ω3n, ω4n, ω5n, ω6n are given
in Appendix B by (B 19), (B 24)–(B 34).

Equation (4.20) represents n(n = 1 to ∞) algebraic equations for n unknowns,
(J1, J2, . . . , Jn). Equation (4.21) represents n equations for n + 2 unknowns
(I1, I2, . . . , In+2). It should be noted that the coefficients of I−1 and I−2 in (4.21)
which appear for n = 1 and n = 2 are equal to zero, so that (4.21) is independent
on I−1 and I−2. The absolute values of In and Jn decrease as n increases and they
converge to zero as n tends to infinity. Therefore, depending on the desired accuracy,
we may truncate these two sets of equations at some point n = N , and letting
IN+1 = IN+2 = 0, so that by the simultaneous solution of these two set of N equations
the value of C21 given by (4.14) and/or its derivatives for each discrete points at
position (ξ, η) is uniquely determined by the summation of the N terms.

4.3. Numerical solution at order Pe

A numerical solution of the equation and boundary conditions (4.10)–(4.14) is
performed by applying a finite-difference approximation. The domain of interest is
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divided into (K + 1)(L + 1) nodes constructed by a net of bipolar coordinates, where
K is the number of intervals on the ξ -coordinates and L is the number of intervals
on the η-coordinates, illustrated in figure 2. For each node we may write

A0C21 = A1C21(1) + A2C21(2) + A3C21(3) + A4C21(4), (4.22)

in which Ai(i = 0, 1, 2, 3, 4) are the weighting functions and C21(i)(i = 1, 2, 3, 4) are
the values of C21 at four immediate neighbourhood nodes, located on the coordinate
curves crossing at the point under consideration, C21. Here, node (1) is taken to
be located in the increasing direction of η, node (2) is its reflection with respect to the
ξ -coordinate, node (3) is in the increasing direction of ξ , and node (4) is its reflection
with respect to the η-coordinate. Using a Taylor series expansion, (4.22) may be
written as

A1

[
C21 + hη

∂C21

∂η
+

h2
η

2

∂2C21

∂η2
+

h3
η

3!

∂3C21

∂η3
+ · · ·

]

+A2

[
C21 − hη

∂C21

∂η
+

h2
η

2

∂2C21

∂η2
+ O

(
h3

η

)]

+A3

[
C21 + hξ

∂C21

∂ξ
+

h2
ξ

2

∂2C21

∂ξ 2
+ O

(
h3

ξ

)]

+A4

[
C21 − hξ

∂C21

∂ξ
+

h2
ξ

2

∂2C21

∂ξ 2
+ O

(
h3

ξ

)]
− A0C21 = 0, (4.23)

in which hξ and hη are intervals chosen for ξ - and η-coordinates, respectively,
determined by (2.3).

The electroviscous ion concentration, C21, should simultaneously satisfy the exact
equation, given by (4.10), and the approximate one given by (4.23). Therefore, the
weighted functions Ai are determined, upon matching these two equations:

A0 = 2(cosh ξ − cos η)

[
sin2 η

h2
ξ

+
sin2 η

h2
η

+
1

2

]
,

A1 =
sin2 η(cosh ξ − cos η)

h2
η

+
sin η(cosh ξ cos η − 1)

2hη

,

A2 =
sin2 η(cosh ξ − cos η)

h2
η

− sin η(cosh ξ cos η − 1)

2hη

,

A3 = sin2 η

[
(cosh ξ − cos η)

h2
ξ

− sinh ξ

2hξ

]
,

A4 = sin2 η

[
(cosh ξ − cos η)

h2
ξ

+
sinh ξ

2hξ

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.24)

Because the exact equation does not possess terms of higher order than ∂2C21/∂ξ 2

and ∂2C21/∂η2, we truncate terms of O(h3
ξ ) and O(h3

η) in the approximate equation.

Thus, the error in this calculation is of order (h3
ξ +h3

η). Equation (4.24) can be applied
to all individual interior nodes of the domain that have four neighbourhood nodes
around them. On the boundary of domain on the solid surfaces, we have only three
neighbourhood nodes and at its edge only two. To manipulate the finite-difference ap-
proximation for such points, we may consider an imaginary node behind the boundary
denoted by C21(4

′) for the wall and C21(3
′) for the sphere surface, the value of
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which is determined by imposing the Newman boundary conditions (4.11) and
(4.12):

C21(3
′) = C21(4) + 2hξBS, C21(4

′) = C21(3) − 2hξBW, (4.25)

where we have written

BW = FcW (cosh ξ − cos η)
∂

∂ξ

[
(cosh ξ − cos η)

∂

∂ξ

]
Vξ on ξ = 0, (4.26)

BS = FcP (cosh ξ − cos η)
∂

∂ξ

[
(cosh ξ − cos η)

∂

∂ξ

]
Vξ on ξ = α. (4.27)

Thus, the finite-difference equation (4.22) may be written as

−A0C21 + A1C21(1) + A2C21(2) + (A3 + A4)C21(3) = 2A4hξBW, (4.28)

for nodes on Sw and

−A0C21 + A1C21(1) + A2C21(2) + (A3 + A4)C21(4) = −2A3hξBS (4.29)

for those on Sp . In addition to the solid surfaces for which ξ is constant, we have two
other boundaries of the domain for which η is constant: one on the z-axis above the
sphere for which η = 0, and the other is that part of the z-axis below the sphere for
which η = π (cf. figure 2). To manipulate the finite-difference approximation for such
points, we may consider the imaginary nodes on the left side of the z-axis being located
in such a way that the slope of the left-hand sides and the right-hand sides on the z-axis
is the same. Thus, if the nodes behind the boundary η = π are denoted by C21(1

′) and
those behind the boundary η = 0 are denoted by C21(2

′), their values are determined by

C21(1
′) = 2C21 − C21(2), C21(2

′) = 2C21 − C21(1), (4.30)

from which the finite-difference equation (4.22) for the interior nodes on these
boundaries is determined:

(2A1 − A0)C21 + (A2 − A1)C21(2) + A3C21(3) + A4C21(4) = 0 on η = π, (4.31)

(2A2 − A0)C21 + (A1 − A2)C21(1) + A3C21(3) + A4C21(4) = 0 on η = 0. (4.32)

It remains to write down the finite-difference equations for the nodes located on the
four edges of the boundary which have only two nodes around them, namely the
intersection of the z-axis with the wall (ξ = 0, η = π), the intersections of the z-axis
and the sphere (ξ = α, η = π and ξ = α, η = 0), and the intersection of the x- and
z-axes at infinity (ξ = η = 0). For the node located at infinity, we have its value
given by boundary condition (4.13), so it may directly be imposed in the matrix of
coefficients. For the others, their equations are easily obtained by combining (4.28)
and (4.29), and (4.31) and (4.32):

(2A1 − A0)C21 + (A2 − A1)C21(2) + (A3 + A4)C21(4) = 2hξA4BW (4.33)

at (η = π, ξ = 0)

(2A1 − A0)C21 + (A2 − A1)C21(2) + (A3 + A4)C21(3) = −2hξA3BS (4.34)

at (η = π, ξ = α)

(2A2 − A0)C21 + (A1 − A2)C21(2) + (A3 + A4)C21(3) = −2hξA3BS (4.35)

at (η = 0, ξ = α).

Now, each discrete node has an individual equation, so that its value is uniquely
determined upon the solution of these (K + 1)(L + 1) algebraic linear equations
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Node Analytic Numeric Analytic Numeric Analytic Numeric Analytic Numeric

1(origin)–4 −0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000
5–8 −1.0265 −1.0185 −0.8858 −0.8789 −0.7839 −0.7778 −0.7170 −0.7112
9–12 −2.0377 −2.0233 −1.7579 −1.7456 −1.5552 −1.5444 −1.4221 −1.4119

13–16 −3.0185 −2.9985 −2.6027 −2.5857 −2.3015 −2.2866 −2.1037 −2.0897
17–20 −3.9542 −3.9291 −3.4071 −3.3860 −3.0108 −2.9923 −2.7503 −2.7330
21–24 −4.8311 −4.8012 −4.1587 −4.1338 −3.6717 −3.6500 −3.3514 −3.3312
25–28 −5.6361 −5.6019 −4.8460 −4.8177 −4.2738 −4.2493 −3.8970 −3.8743
29–32 −6.3574 −6.3192 −5.4584 −5.4271 −4.8074 −4.7804 −4.3783 −4.3534
33–36 −6.9845 −6.9428 −5.9867 −5.9527 −5.2641 −5.2352 −4.7873 −4.7607
37–40 −7.5085 −7.4636 −6.4231 −6.3868 −5.6371 −5.6065 −5.1177 −5.0897
41–44 −7.9221 −7.8744 −6.7612 −6.7232 −5.9208 −5.8889 −5.3642 −5.3353
45–48 −8.2199 −8.1699 −6.9966 −6.9572 −6.1112 −6.0785 −5.5236 −5.4941
49–52 −8.3985 −8.3465 −7.1267 −7.0861 −6.2063 −6.1732 −5.5938 −5.5643
53–56 −8.4565 −8.4029 −7.1505 −7.1094 −6.2057 −6.1727 −5.5750 −5.5458
57–60 −8.3946 −8.3399 −7.0693 −7.0281 −6.1111 −6.0786 −5.4687 −5.4405
61–64 −8.2159 −8.1605 −6.8865 −6.8455 −5.9259 −5.8944 −5.2788 −5.2520
65–68 −7.9255 −7.8697 −6.6074 −6.5671 −5.6557 −5.6257 −5.0108 −4.9860
69–72 −7.5309 −7.4751 −6.2394 −6.2002 −5.3080 −5.2800 −4.6721 −4.6499
73–76 −7.0416 −6.9860 −5.7919 −5.7543 −4.8921 −4.8667 −4.2720 −4.2531
77–80 −6.4693 −6.4141 −5.2762 −5.2405 −4.4194 −4.3971 −3.8216 −3.8067
81–84 −5.8273 −5.7726 −4.7054 −4.6721 −3.9027 −3.8842 −3.3336 −3.3235
82–86 −5.1306 −5.0762 −4.0943 −4.0638 −3.3566 −3.3426 −2.8219 −2.8173
87–92 −4.3950 −4.3408 −3.4591 −3.4319 −2.7973 −2.7884 −2.3013 −2.3029
93–96 −3.6374 −3.5836 −2.8180 −2.7946 −2.2423 −2.2394 −1.7866 −1.7957
97–100 −2.8767 −2.8239 −2.1915 −2.1724 −1.7113 −1.7149 −1.2929 −1.3115

101–104 −2.1362 −2.0859 −1.6030 −1.5885 −1.2256 −1.2359 −0.8362 −0.8678
105–108 −1.4470 −1.4017 −1.0783 −1.0687 −0.8079 −0.8241 −0.4369 −0.4862
109–112 −0.8497 −0.8121 −0.6436 −0.6387 −0.4780 −0.4977 −0.1248 −0.1944
113–116 −0.3882 −0.3603 −0.3193 −0.3186 −0.2451 −0.2639 0.0601 −0.0202
117–120 −0.0984 −0.0826 −0.1130 −0.1145 −0.0974 −0.1101 0.0897 0.0291
121(infinity)–124 0.0000 0 0 −0.0000 0 −0.0000 0 −0.0000

Table 1. Comparison of numerical and (semi-)analytical solutions of c̃∗
2 = Pec̃21(=PeC21

cos θ ), on the plane θ = 0, for the nodes corresponding to figure 2 (K = 3, L = 30), Pe =
0.01, δ = 0.1, ζp = −50 mV, ζw = −100 mV, S = 2.

simultaneously. This is done by constructing the matrix of coefficients of C21 and the
vector of the right-hand sides.

An example of the analytical and numerical solutions of c̃∗
2 = Pec̃21(= PeC21 cos θ)

on the plane θ = 0 for comparison is illustrated in table 1. In this example, Pe is
taken to be equal to 0.01 and δ to 0.1, the number of intervals on the ξ -coordinates
is taken to be three (K = 3) and that on the η-coordinates is taken to be thirty
(L = 30), corresponding to figure 2. The other parameters are ζp = −50 mV, ζw =
−100 mV, S = D1/D2 = 2, and the medium is a monovalent electrolyte solution at
room temperature. For the analytical solution, the number of terms to be summed
is taken to be N = 45 terms, corresponding to five digits of accuracy. Each node
is addressed by its number, j, [j = 1 to (K + 1)(L + 1)]. The number of nodes
starts at the origin (ξ = 0, η = π), increases with increasing the ξ -coordinate and
with decreasing the η-coordinate as shown in figure 2. The results shown in table 1
indicate that these two solutions quite agree with each other; the differences between
them are of the order of 0.01. The discrepancy between the signs of c̃2 at node 116 is
due to the approximation in the numerical calculation. For K � 4, the approximation
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improves and the − sign turns to + sign in agreement with that of the analytical
solution. For hη = hξ ≈ 0.02 (corresponding to K = 22 and L = 150), the difference
between these two solutions is of O(10−4).

5. Perturbed potential
The electroviscous potential (perturbed electric potential) at O(∈2), ψ̃∗

2 is given by
(Cox 1997; (9.7), (9.8a,b,e,d ))

ψ̃∗
2 =

(
D2 − D1

D2 + D1

)
c̃∗
2 + φ̃∗, (5.1)

in which c̃∗
2 at order Pe has already been determined and φ̃∗ satisfies the Laplace

equation

∇̃2φ̃∗ = 0, (5.2)

with boundary conditions

∂φ̃∗

∂ξ
= PeFφJ (cosh ξ − cos η)

∂

∂ξ

[
(cosh ξ − cos η)

∂

∂ξ

]
ũξ , J = (P, W ) on SJ ,

(5.3a)
and

φ̃∗ → 0 as (ξ, η) → 0, (5.3b)

in which FφP and FφW are defined by

FφP =

(
2D1

D1 + D2

)
ψ̃P , FφW =

(
2D1

D1 + D2

)
ψ̃W . (5.4)

If we write down (5.2) and boundary conditions (5.3) in the bipolar coordinate system
and let

φ̃∗ = Pe Φ cos θ, (5.5)

we see that Φ satisfies the same equation and boundary conditions as those for the
electroviscous ion concentration at order Pe, C21, given by (4.10)–(4.13), except that
the coefficients of the boundary conditions FcP and FcW are now replaced by FφP and
FφW defined by (5.4). Therefore, at order Pe we have an analytical solution for the
electroviscous potential also. Thus, if we expand the electroviscous potential as

ψ̃∗
2 = cos θψ21Pe + O(Pe2), (5.6)

with ψ21 determined by

ψ21 =
1 − S

1 + S
C21 + Φ, (5.7)

in which S is defined by (2.12).

6. Electrohydrodynamic flow field
The electroviscous (electro-hydrodynamic) flow field (perturbed flow field) which

appears at order ∈4 satisfies Stokes equations (Cox 1997; (11.2a–d )):

∇̃2ũ∗
4 − ∇̃p̃∗

4 = 0, (6.1)

∇̃ · ũ∗
4 = 0. (6.2)
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This flow field is produced by the tangential motions of the ions in the diffuse double
layer; hence it has its component just outside the double layer, i.e. its boundary
condition on the solid surfaces is (Cox 1997; (12.8a,b))

ũ∗
4 |SJ

= λ[∇̃−nJ (nJ · ∇̃)]

{
−4 ln

[
cosh

(
ψ̃J

4

)] (
c̃∗
2 |SJ

)
+ ψ̃J

(
ψ̃∗

2 |SJ

)}
, J = (P, W ),

(6.3)

which represents tangential derivatives of the electroviscous ion concentration and the
electroviscous potential (times parameters depending on physicochemical properties
of the system, λ defined by (2.8) and ψ̃J defined by (2.17)) evaluated on the solid
surface J). The origin of this flow field is in the diffuse double layer located on the
solid surfaces, so that as the distance from the solid surfaces increases this flow field
diminishes resulting in

ũ∗
4 → 0 as |r̃ | → ∞. (6.4)

Using the identities (Tabatabaei et al. 2006a, relations (6.23)–(6.28))

−4 ln

[
cosh

(
ψ̃J

4

)]
= −2(GJ + HJ ), ψ̃J = −2(GJ − HJ ), J = (P, W ), (6.5)

the coefficients of c̃∗
2 and ψ̃∗

2 in the boundary conditions (6.3) may be expressed in
terms of (GJ , HJ ) defined by (1.6). Doing so, introducing c̃∗

2 and ψ̃∗
2 (given by (4.5),

(4.9a), and (5.5)–(5.7)) to boundary conditions (6.3), written in the bipolar coordinate
system, results in

ũ∗
4η = −2Pe λ

(cosh ξ − cos η)

c

[
(GJ + HJ )

∂C21

∂η
+ (GJ − HJ )

∂ψ21

∂η

]
cos θ on SJ ,

(6.6a)

ũ∗
4θ = +2Pe λ

(cosh ξ − cos η)

c
[(GJ + HJ )C21 + (GJ − HJ )ψ21] sin θ on SJ , (6.6b)

ũ∗
4ξ |SJ

= 0, (6.6c)

in which c is the geometry constant defined by (2.2a).

7. Electrohydrodynamic force on sphere
The perturbed force experienced by the particle is the sum of the perturbed

electrostatic force and the perturbed hydrodynamic force. The perturbed force due
to the electrostatics is determined by the Maxwell stress tensor resulting from the
perturbed electric potential (electroviscous potential). For thin double layers, this
force is of order ∈6, two orders of magnitude smaller than that induced by the
perturbation on the flow field which is of the order of ∈4 (Cox 1997). Thus, the
dominant contribution to the perturbed force comes from the electroviscous (electro-
hydrodynamic) flow field which is determined by

F̃ ∗
i = ∈4 F̃ ∗

4i = ∈4

∫
S

σ̃ ∗
4ij njdS̃ (i, j = x, y, z), (7.1)

where the integration is taken over any closed surface, S, surrounding the particle P,
σ̃ ∗

4ij is the stress tensor produced by the electroviscous flow field described by (6.1)–
(6.4), nj are the components of the unit vector normal to the surface S outward to the
surrounded liquid, and dS is an infinitesimal surface on S. (Here and afterwards the
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Einstein summation convention is imposed on the repeated indices, unless otherwise
stated.) However, we do not use explicitly the electro-hydrodynamic flow field to
obtain the required stress tensor; instead we use the Lorentz reciprocal theorem to
determine the force from the known solution of the translation of the particle parallel
to the wall with unit velocity.

7.1. Lorentz reciprocal theorem

Let us consider a disturbance flow field (ũT k, P̃T k) produced by a translation (indices
T denote translation) of the particle P (the sphere) with unit velocity in direction
k (k = 1, 2, 3, corresponding to x-, y-, and z-axes) in a semi-infinite quiescent fluid
bounded by an infinite plane wall. For each direction k, the flow field satisfies the
Stokes equations, that is

∇̃2ũT k − ∇̃PT k = 0 and ∇̃ · ũT k = 0,

or in indices notation

∂2ũT ki

∂r̃j ∂r̃j

− ∂P̃T k

∂r̃i

= 0, (i, j, k = 1, 2, 3), (7.2)

∂ũT ki

∂r̃i

= 0, (7.3)

together with the corresponding boundary conditions:

ũT ki = δik on Sp, (7.4)

ũT ki = 0 on SW, (7.5)

ũT ki = 0 as |r̃| → 0, (7.6)

in which δik is the Kronecker δ. The first boundary condition shows that the velocity
of the fluid is equal to unity only in the direction of the translation of the particle,
i.e. when i = k, and it is equal to zero for the other directions, which is the no-slip
boundary condition on the particle surface.

Then Lorentz reciprocal theorem may be written as (Happel & Brenner 1965, p.
85, (3.5.1)) ∫

S

ũT kiσ
∗
4ij njdS̃ =

∫
S

ũ∗
4i σ̃T kijnjdS̃, (7.7)

in which σ̃T kij is the stress tensor for the flow field (ũT k, P̃T k), nj is the unit vector
normal and outward to a closed surface S bounding any fluid volume. Surface S may
consist of a number of distinct surfaces. Let S include the particle surface SP , the wall
surface SW , and an imaginary surface SR of a semi-sphere drawn into the fluid with
an infinite radius R. Thus, the integral on the left-hand side of the Lorentz reciprocal
theorem may be expressed as∫

S

ũT ki σ̃
∗
4ij nj dS̃ =

∫
SP

ũT ki σ̃
∗
4ij nj dS̃ +

∫
SW

ũT ki σ̃
∗
4ij nj dS̃ +

∫
SR

ũT ki σ̃
∗
4ij nj dS̃. (7.8)

The velocity ũT ki is due to particle translation, and hence it is induced by a point-force
application of the Oseen technique (assuming the force exerted on the fluid, by the
particle, can be considered as a point force), so that it should be of the order of R̃−1

(Happel & Brenner 1965, p. 83), which is consistent with boundary condition (7.6).
Noting that the magnitude of the force is finite, like the pressure, the stress tensor
(force per unit area) is of the order of R̃−2 and dS̃ is of order R̃dR̃, and hence the
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integrand of the third integral on the right-hand side of (7.8) is of the order R̃−2dR̃.
Therefore, the third integral is of order R̃−1 and hence it vanishes as R̃ tends to
infinity, that is ∫

SR

ũT ki σ̃
∗
4ij nj dS̃ → 0 as R̃ → ∞. (7.9)

The second term in the right-hand side of (7.8) is obviously equal to zero, because by
boundary condition (7.5) the velocity on the wall is equal to zero and the electroviscous
stress tensor on the wall is of order unity (hence, it is not too large), resulting in∫

SW

ṽT ki σ̃
∗
4ij nj dS̃ = 0. (7.10)

But, the first integral is exactly what we are looking for, the electroviscous force,
since by the aid of boundary condition (7.4) the velocity on the particle surface SP is
only non-zero and equal to unity when i = k. Thus, letting i = k and ũT ki = 1, the
remaining integral on the right-hand side of (7.8) becomes∫

SP

1 × σ̃ ∗
4kjnj dS̃,

which represents the electroviscous force F̃ ∗
4k defined by (7.1) for which i is taken to

be equal to k and S is taken to be SP . Therefore, the Lorentz reciprocal theorem,
given by (7.7), may be expressed as

F̃ ∗
4k =

∫
SP

ũ∗
4i σ̃T kijnj dS̃ +

∫
SW

ũ∗
4i σ̃T kijnjdS̃ +

∫
SR

ũ∗
4i σ̃T kijnj dS̃. (7.11)

By the same argument as for the integral (7.9) the third integral on the right-hand
side of (7.11) vanishes, resulting in

F̃ ∗
4k =

∫
SP

ũ∗
4i σ̃T kijnj dS̃ +

∫
SW

ũ∗
4i σ̃T kijnj dS̃ (7.12)

or in vectorial notation as

F̃ ∗
4k =

∫
SP

ũ∗
4 · σ̃ T k · dS̃ +

∫
Sw

ũ∗
4 · σ̃ T k. dS̃, (7.13)

in which dS̃ = dS̃ξ i ξ +dS̃η iη+dS̃θ i θ . It should be evaluated on the solid surfaces J (J =
P, W ). Note that dSi(i = ξ, η, θ) are infinitesimal surfaces normal to coordinates
(ξ ,η,θ), respectively. Noting that the unit vector outward the solid surfaces for the
particle is −i ξ and for the wall i ξ , dS̃ in the integrand of the force (7.13) has only

one component on each solid surface, that is dS̃ξ , which is determined by the aid of
(2.2b) as

dS̃ξ |Sp = − c2 sin η dη dθ

(coshα − cos η)2
, dS̃ξ |SW

=
c2 sin η dη dθ

(1 − cos η)2
. (7.14)

Therefore, the integrands of the force evaluated on the solid surfaces are determined
by

ũ∗
4 · σ̃ T k · dS̃|SP

= −
[
ũ∗

4ησ̃T kηξ + ũ∗
4θ σ̃T kθξ

]
|SP

c2 sin η

(coshα − cos η)2
dη dθ, (7.15a)

ũ∗
4 · σ̃ T k · dS̃|SW

=
[
ũ∗

4ησ̃T kηξ + ũ∗
4θ σ̃T kθξ

]
|SW

c2 sin η

(1 − cos η)2
dη dθ, (7.15b)
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in which the components of the electro-hydrodynamic velocity have already been
determined by (6.6a,b). Thus, the advantage of the application of the Lorentz
reciprocal theorem is that, in order to know the component of the electroviscous
force in either direction k(= x, y, z), we require only to obtain the stress tensor
corresponding to the flow field (ũT k, P̃T k) for that direction (described by (7.2)–(7.6)),
evaluated on the solid surfaces J, multiplying it by the known boundary conditions of
the electroviscous flow field (described by (6.6a–c)), and integrating it over the solid
surfaces.

7.2. Stress tensor

For the tangential component (x-component) of the electroviscous force, the stress
tensor for translation of the particle parallel to the wall with unit velocity is required.
This flow field is determined in § 3. The stress tensor σij is a symmetric tensor and
may be determined by the rate of strain tensor (e11, e12, e13 . . .) defined by

e11 = H1

∂u1

∂q1

+ H1H 2u2

∂H1

∂q1

+ H1H 3u3

∂H1

∂q2

, (1, 2, 3) = (ξ, η, θ) = (q1, q2, q3)

e23 =
1

2

[
H 2

H3

∂

∂q2

(H3u3) +
H 3

H2

∂

∂q3

(H2u2)

]
, (7.16a)

where (Hξ, Hη, Hθ ) are the metric coefficients given by (2.2b) as

σij = −pδij + 2eij , δij =

{
1 if i = j,

0 if i �= j,
(7.16b)

from which the required components of the stress tensor, σ̃T xξη and σ̃T xξθ (the indices
Tx denote translation in the x-direction), are determined:

σ̃T xξη =
1

c

[
sin ηũξ + sinh ξ ũη + (cosh ξ − cos η)

(
∂ũξ

∂η
+

∂ũη

∂ξ

)]
, (7.17a)

σ̃T xξθ =
1

c

[
sinh ξ ũθ + (cosh ξ − cos η)

(
∂ũθ

∂ξ
+

1

sin η

∂ũξ

∂θ

)]
. (7.17b)

The flow field is given by (3.18), (A 9)–(A 11), from which and upon excluding the
term due to the moving coordinate system the stress tensor is obtained:

σ̃T xξη = −cos θ

2c

[
σξηA + σξηBC + σξηDE + σξηFG

]
, (7.18a)

σ̃T xξθ =
sin θ

2c
[σξθA + σξθBC + σξθDE + σξθFG], (7.18b)

where σξηA,σξηBC, σξηDE, σξηFG, σξθA,σθBC, σξθDE, σξθFG are given in Appendix
C by relations (C1)–(C8). In the integrand of the force, the stress tensor should be
evaluated on the solid surface J (J = P, W ). Thus, if we write

σ̃T xξη|SJ
= −cos θ

2c
σηJ , σ̃T xξθ |SJ

=
sin θ

2c
σθJ J = (P, W ) (7.19a)

The values of σηJ and σθJ are determined by

σηJ = [σξηA + σξηBC + σξηDE + σξηFG]|SJ
(7.19b)

and

σθJ = [σξθA + σξθBC + σξθDE + σξθFG]|SJ
. (7.19c)
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7.3. Force parallel to wall

The integrand of the electro-hydrodynamic force is given by (7.15a, b), the components
of the stress tensor and electro-hydrodynamic velocity in which are given by (6.6)
and (7.19). Therefore, the integrand of the force evaluated on each solid surface
J (J = W, P ) is determined by

ũ∗
4 · σ̃ T k · dS̃|SJ

= ±
[
(GJ + HJ )

(
∂C21

∂η

∣∣∣∣SJ
σηJ

(
1 + cos 2θ

2

)
+C21|SJ

σθJ

(
1 − cos 2θ

2

))

+ (GJ − HJ )

(
∂ψ21

∂η

∣∣∣∣SJ
σηJ

(
1 + cos 2θ

2

)

+ψ21 |SJ
σθJ

(
1 − cos 2θ

2

))]
dη dθ

(cosh ξ − cos η) |SJ

(7.20)

with the + sign for J = W and – sign for J = P . The integration should be taken
over the solid surfaces determined by the intervals (η = π to η = 0) and (θ = 0
to θ = 2π) for both sphere and wall. The integration over θ is straightforward.
Thus, the electro-hydrodynamic force experienced by the particle is the sum of the
contribution from the charged wall, denoted by F̃ ∗

xW , and the contribution from the
charged particle, denoted by F̃ ∗

xP :

F̃ ∗
x = ∈4 λPe

[
F̃ ∗

xP + F̃ ∗
xW

]
(7.21a)

with

F̃ ∗
xW = π

∫ 0

π

[
(GW + HW )

(
∂C21

∂η

∣∣∣∣ξ=0σηW + C21 |ξ=0 σθW

)

+ (GW − HW )

(
∂ψ21

∂η

∣∣∣∣ξ=0σηW + ψ21 |ξ=0 σθW

)]
dη

(1 − cos η)
(7.21b)

and

F̃ ∗
xP = −π

∫ 0

π

[
(GP + HP )

(
∂C21

∂η

∣∣∣∣ξ=ασηP + C21 |ξ=α σθP

)

+(GP − HP )

(
∂ψ21

∂η

∣∣∣∣ξ=ασηP + ψ21 |ξ=α σθP

)]
dη

(coshα − cos η)
. (7.21c)

These integrations (7.21b,c) are performed numerically by the use of the known
values of C21 and ψ21 (the electroviscous ion concentration and potential) and their
derivatives with respect to η (obtained from the analytical solution (in § 4.2) or the
numerical solution (in § 4.3)) and by the use of the values of stress tensor (obtained
analytically (in § 7.2)) for each node on the solid surfaces.

Because the whole system is in equilibrium, the force experienced by the wall has
the same magnitude as that experienced by the sphere, but with the opposite direction.
Thus, the x-component of the electroviscous force experienced by the wall is equal to
−F̃ ∗

x .
This force should be superimposed on the hydrodynamic force. Thus, if we denote

by kS−W the correction coefficient which must be applied to Stokes’ law as a result
of the presence of the solid wall, then the purely hydrodynamic force, F̃hx , may be
written as

F̃hx = 6πkS−W, (7.22a)
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from which the value of kS−W for the hydrodynamic force is determined by (O’Neill
1964, (26))

kS−W =

√
2

6
c

∞∑
n=0

[En + n(n + 1)Cn], (7.22b)

in which c is the geometry constant determined by (2.2a), and Cn and En are given
by (A 4) and (A 6) in Appendix A.

8. Results and conclusion
The tangential electro-hydrodynamic drag force on a sphere near a wall is obtained

both semi-analytically and numerically by the use of a bipolar coordinate system
(ξ, η, θ), for low Peclet numbers and arbitrary particle–wall distances. The numerical
solution is obtained by applying the finite-difference approximation in the bipolar
coordinate system. The semi-analytical solution is determined as a summation of an
infinite series which is evaluated numerically. The inputs of the force program for
both solutions are as follows:

(a) ion valency, z;
(b) absolute temperature of the medium, T (in K);
(c) ζ -potential of particle and wall surfaces, ζP and ζW (in volts);
(d) ratio of diffusivity of ions, S, defined by (2.12);
(e) dimensionless gap widths, δ, defined by (1.4);
(f) intervals of the discrete points on the ξ and η-coordinates (hξ , hη) defined

by (2.3).
The output is the dimensionless force divided by (∈4 λPe) denoted by F ′

x , defined
as

F̃ ∗
x = λ ∈4 PeF ′

x, (8.1)

from which the dimensional electroviscous drag force is determined by (cf. (1.3), (2.4e),
(2.6b), (2.9))

F ∗
x =

(εrε0)
2(kT )3U

2(ze)4c∞D1a
F ′

x. (8.2)

In view of the Stokes–Einstein equation, relating the diffusion coefficient D to the
friction coefficient f by

D =
kT

f
(8.3)

(where for spheres of radius ai , f is determined by Stokes law as f = 6πµai),
and because the tangential electroviscous force is inversely proportional to diffusion
coefficient of counter-ions, it is linearly proportional to counter-ion size and to the
viscosity of the medium.

Representative results of the tangential electroviscous drag (F ′
x in (8.1)) are

illustrated in figures 3–8 and tables 2–5. For these examples, the ion valency is taken
to be one and the temperature of the medium is room temperature (T = 298K). All
calculations are based on hξ = hη = 0.1. These intervals are modified in the programs
to the closest value to 0.1 for which the number of intervals on the ξ -coordinate (K)
and the η-coordinate (L), defined by (2.2) and (2.3), leads to an integer number. For
analytical calculations the number of terms in the summation of the infinite series (N)
are chosen in a way that the boundary condition of the flow field (which is involved in
the calculation of the electroviscous equations given by (4.10)–(4.13) and (5.1)–(5.4))
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(a) For δ � 1.
δ 0.000001 0.00001 0.0001 0.001 0.01
kS−W 8.3225 7.0945 5.8667 4.6400 3.4225
F ′

A −1.9522 × 1014 −1.9528 × 1012 −1.9519 × 1010 −1.9493 × 108 −1.9486 × 106

F ′
N/F ′

A 1.0036 1.0006 1.0004 1.0008 1.0037

F ′
I /F

′
A 0.1928 0.1928 0.1928 0.1930 0.1931

F ′
A/F ′

U 6.2256 × 1011 6.2254 × 109 6.2244 × 107 6.2163 × 105 6.2140 × 103

(b) For δ of order unity.
δ 0.1 0.5 1 2.5 5 10
kS−W 2.2643 1.5957 1.3828 1.1891 1.1029 1.0538
F ′

A −2.1723 × 104 −1.6733 × 103 −823.5514 −480.0500 −391.4905 −351.1722

F ′
N/F ′

A 0.9968 0.9941 0.9924 0.9924 0.9930 0.9931

F ′
A/F ′

U 69.2741 5.3362 2.6263 1.5309 1.2484 1.1199

(c) For δ  1.
δ 25 50 100 500 1000 10000 50000
kS−W 1.0221 1.0112 1.0056 1.0011 1.0006 1.0001 1.0000
F ′

A −327.8491 −320.2125 −316.7471 −313.6928 −313.3114 −312.9568 −312.9591

F ′
N/F ′

A 0.9933 0.9931 0.9930 0.9928 0.9924 0.9925 0.9926

F ′
A/F ′

U 1.0455 1.0211 1.0101 1.0003 0.9991 0.9980 0.9980

Table (2a–c). Dependence of force on particle–wall distances, ζp = ζw = −100 mV, S = 1/2.
kS−W Correction coefficient to Stokes law for hydrodynamic force defined by (7.22).
F ′

A Force obtained analytically ((7.21), with coefficients determined analytically).
F ′

N Force obtained numerically ((7.21), with coefficients determined numerically).
F ′

I Inner region contribution to the force.
F ′

U Force for unbounded flow, obtained by Ohshima et al. (1984) with ζP = −100 mV.
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δ = h/a
1 10 100 1000

Analytic

Numeric

Model

Inner

Ohshima

–F′
x

1011

1010

109

108

107

106

105

104

103

102

101

Figure 3. Tangential electroviscous force versus gap width for
ζp = −50 mV, ζW = −125 mV, S = 2.
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for each discrete node on the particle surface converges up to five digits of accuracy.
As the particle–wall distances decrease, the rate of convergence decreases and hence
the number of terms increases. However, practically, it is impossible to uniquely apply
this convergence criterion to all discrete points for the whole range of δ, defined by
(1.4), because of the capacity and ability of the available program and computers.
For example, for δ = 10−6 the node on the intersection of the sphere and below the
z-axis (the slowest convergence node) for N = 7000 terms (the maximum number
that can be handled by the program) to be summed converges only up to two digits
of accuracy. However, the boundary condition on the wall surface converges much
faster than that on the particle surface. For example, the node on the intersection
of z- and x-axes (the origin of coordinate system), the slowest convergence node on
the wall, for δ = 10−6 converges with five digits of accuracy for 7000 terms to be
summed. Therefore, the values of the electroviscous parameters evaluated on the wall
are much more accurate than those evaluated on the particle surface. In addition
to these errors, the errors due to the numerical integrations of the force integral
equation on coordinate η should be considered in the results. The integration error
tends to zero, as the interval on the η-coordinate (7.21b,c) tends to zero, and it is
again impossible to manage the error up to desired accuracy, especially for very large
values of δ. As δ increases, the number of intervals on the ζ -coordinate (K) increases
(cf. (2.2) and (2.3)), resulting in a lack of computer memory when the number of
intervals on the η-coordinate (L) is increased. For the numerical calculations, the
errors are of the order of (h3

ξ+h3
η). Therefore, though the analytical calculations of

the electro-hydrodynamic parameters for δ of order unity are correct up to five digits
accuracy, the accuracy of the results presented here, especially for very small and very
large values of δ, should be considered between two and three digits.

The analytical results are compared with the numerical ones, and for the limiting
cases of small and large particle–wall distances, they are compared, respectively, with
the inner solution by Tabatabaei et al. (2006b), given by (1.5) and the force on an
isolated sphere in an unbounded liquid obtained by Ohshima et al. (1984), given by
(1.1).

The dependence of the force (F ′
x in (8.1)) on the dimensionless gap width is plotted

in figure 3 and tables 2(a)–4(a) for δ � 1, tables 2(b)–4(b) for δ of order unity and
tables 2(c)–4(c) for δ  1. The ζ -potentials are taken to be ζP = ζW = −100 mV
for table 2(a–c), ζP = −100 mV and ζW = 0 for table 3(a–c), and ζP = 0 and
ζW = −100 mV for table 4(a–c). The ratio of diffusivity of ions for these tables
is S = 1/2. The effects of the wall on the hydrodynamic force, kS−W , defined by
(7.22), is also included in table 2. As the particle–wall distance increases the effect
of the wall interaction diminishes, resulting in a lower magnitude of the force. Table
2(a–c) shows that as the particle–wall distances increase, the effects of the wall on the
electro-hydrodynamic force diminishes faster than that on the hydrodynamic force.
At large distances from the wall, the drag component of the electroviscous force
is comparable to the theory of Ohshima et al. (1984) for the sedimentation of an
isolated sphere with two digits of accuracy, which is the accuracy of the calculations
for large values of δ. The most accurate analytical result belongs to table 4(a–c)
because all nodes on the wall surface in (7.21b) pass the convergence criterion, and
the contribution to the force from the sphere surface determined by (7.21c) is equal
to zero. In general, the dependence of the force on zeta potentials is nonlinear, so
that superposition of the problems of (ζP = −100, ζW = 0) and (ζP = 0, ζW = −100)
is not equal to the problem (ζP = ζW = −100), except for large values of δ where
the effect of the charged wall on the flow field vanishes. Though the inner solution
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(a) For δ � 1.
δ 0.000001 0.00001 0.0001 0.001 0.01
F ′

A −5.9156 × 1013 −5.9154 × 1011 −5.9165 × 109 −5.9277 × 107 −6.0960 × 105

F ′
N/F ′

A 1.0051 1.0019 1.0016 1.0021 1.0089

F ′
I /F

′
A −1.6621 −1.6621 −1.6618 −1.6587 −1.6129

F ′
A/F ′

U 1.8865 × 1011 1.8864 × 109 1.8867 × 107 1.8903 × 105 1.9440 × 103

(b) For δ of order unity.
δ 0.1 0.5 1 2.5 5 10
F ′

A −8.7112 × 103 −1.1407 × 103 −693.1971 −463.2464 −388.5805 −350.7362

F ′
N/F ′

A 0.9976 0.9930 0.9917 0.9923 0.9930 0.9931

F ′
A/F ′

U 27.7795 3.6377 2.2106 1.4773 1.2392 1.1185

(c) For δ  1.
δ 25 50 100 500 1000 10000 50000
F ′

A −327.8491 −320.2125 −316.7471 −313.6928 −313.3114 −312.9568 −312.9591

F ′
N/F ′

A 0.9933 0.9931 0.9930 0.9928 0.9924 0.9925 0.9926

F ′
A/F ′

U 1.0455 1.0211 1.0101 1.0003 0.9991 0.9980 0.9980

Table 3(a–c)a . Dependence of force on particle–wall distances, ζp = −100, ζw = 0S = 1/2.
aThe various forces are defined in table 2.

(a) For δ � 1.

δ 0.000001 0.00001 0.0001 0.001 0.01

F ′
A −1.1842 × 1013−1.1841 × 1011−1.1839 × 109 −1.1819 × 107 −1.1762 × 105

F ′
N /F ′

A 0.9884 0.9884 0.9884 0.9884 0.9878

F ′
I /F ′

A 4.7178 4.7179 4.7190 4.7269 4.7498

(b) For δ of order unity.

δ 0.1 0.5 1 2.5 5 10

F ′
A −1.3297 × 103 −90.9652 −28.8780 −4.6626 −0.8714 −0.1346

F ′
N/F ′

A 0.9910 0.9917 0.9917 0.9917 0.9918 0.9917

(c) For δ  1.

δ 25 50 100 500 1000 10 000 50 000

F ′
A −0.0097 −0.0013 −1.6154 × 10−4 −1.3121 × 10−6 −1.6432 × 10−7 −1.6460 × 10−10 −1.3170 × 10−12

F ′
N/F ′

A 0.9917 0.9917 0.9917 0.9917 0.9917 0.9917 0.9917

Table 4(a–c)a . Dependence of force on particle–wall distances,
ζp = 0, ζw = –100 mV, S = 1/2.

aThe various forces are defined in table 2.

predicts the right order in δ, it overestimates the force by a factor 4.7178 in table 4(a),
and it underestimates the force by a factor 0.1928 in table 2(a), and it even reverses
the sign of the force by a factor −1.6621 in table 3(a), which indicates that the inner
solution alone cannot provide a good approximation for the force. This means that
the contribution to the force from the outer region is not negligibly small and should
be considered in the calculation of the force. The difference between the complete
and the inner solutions is due to the expected outer region contribution to the force.
Therefore, as for the inner solution, the contribution to the force from the outer region
can be either negative or positive. Thus, depending on the signs and magnitudes of
the zeta potentials of the particle and wall, the electroviscous perturbation flow can
either increase or decrease the stress exerted on the sphere. Tables 2(a), 3(a) and 4(a)
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δ ζP ζW S Innera Outerb Numeric Analytic Model

10−1 −400 0 10 +2.6054 × 105 −4.9138 × 105 −2.3028 × 105 −2.3084 × 105 −1.5676 × 105

10−1 +400 0 10 +2.3808 × 106 −4.4902 × 106 −2.1043 × 106 −2.1094 × 106 −1.4324 × 106

10−2 −200 −50 5 +4.4613 × 106 −1.0096 × 107 −5.6717 × 106 −5.6346 × 106 −5.5574 × 106

10−2 +200 −50 5 +2.6904 × 107 −3.8531 × 107 −1.1752 × 107 −1.1627 × 107 −1.1109 × 107

10−3 −100 +100 1 +1.0543 × 108 −8.8447 × 108 +1.6116 × 107 +1.5983 × 107 +1.6392 × 107

10−3 +100 +100 1 −4.0464 × 107 −1.6915 × 108 −2.0977 × 108 −2.0961 × 108 −2.0992 × 108

10−4 −50 +200 0 +2.0452 × 109 −9.1570 × 108 +1.1332 × 109 +1.1295 × 109 +1.1307 × 109

10−4 +50 +200 0 −1.5259 × 109 −6.2430 × 108 −2.1493 × 109 −2.1502 × 109 −2.1505 × 109

10−5 −25 −300 1/5 −7.6602 × 1012 +5.2654 × 1012 −2.3783 × 1012 −2.3948 × 1012 −2.3936 × 1012

10−5 +25 −300 1/5 −6.6802 × 1012 +5.8286 × 1012 −8.3321 × 1011 −8.5162 × 1011 −8.5030 × 1011

10−6 0 +400 1/10 −1.4804 × 1014 +1.1666 × 1014 −3.1014 × 1013 −3.1379 × 1013 −3.1352 × 1013

10−6 0 −400 1/10 −1.3528 × 1015 +1.0661 × 1015 −2.8340 × 1014 −2.8674 × 1014 −2.8649 × 1014

Table 5. Comparison of model (8.4) with numerical, analytical and inner solutions.
aInner region contribution to the force.
bExpected outer region contribution to the force.

show that for δ � 1 the ratio of the force to that experienced by an isolated sphere
with ζP = −100 mV is equal to 0.6226 δ−2 for identical ζ -potentials, to 0.1886 δ−2

for an uncharged wall and to 0.0378 δ−2 for an uncharged particle. These ratios have
been found to be valid for all ζ -potentials and ratios of diffusivity of ions, from which
the following model is derived which can predict the force with high precision valid
for δ � 1:

F ′
x = −παxδ

−2[(10GP + GW )(GP + 2GW ) + S(10HP + HW )(HP + 2HW )], (8.4)

in which αx = 0.90554 and GJ and HJ (J = P, W ) are defined by (1.6). The accuracy
of the model (8.4) is illustrated in table 5. The smaller δ and the smaller the difference
between the particle and the wall ζ -potentials, the more accurate is the model. The
expected contribution of the outer region to the force is also listed in table 5. Although,
in most cases, the tangential force is negative (increasing the hydrodynamic drag),
there are some situations in which it is positive (decreasing the hydrodynamic drag).
The model is also plotted in figures 3, 4(a), 5(a, b), 6(a, b). For figure 3, S = 2,
ζP = −50 mV and ζW = −125 mV. The inner region contribution to the force for
this figure is equal to 1.0387 times the analytical force, i.e. the difference between the
inner solution and complete one is less than 4 %. Figure 3 also shows that the model
(8.4) is quite adequate for δ < 0.1, whereas (1.1) is adequate for δ > 10. Only for δ

of order unity, the program of the full solution, either numerical or semi-analytical,
is required.

The dependence of the force (F ′
x in (8.1)) on the ratio of diffusivity of ions is

illustrated in figure 4(a), for δ = 0.01 and in figure 4(b) for δ = 1 and δ = 100. These
results are obtained for ζP = ζW = −100 mV. In general, the force depends linearly on
S, as can be seen from (8.4), but for the case δ = 0.01, the slope of the inner solution,
which is a function of the particle and wall ζ -potentials (cf. formulae (1.5) and (1.6)),
significantly differs from that of the complete solution. For the whole range of S, the
inner solution underestimates the force by a factor of 0.1931 (cf. figure 4a). Because
the tangential force depends linearly on S(= D1/D2), it also linearly depends on
1/D2[= (1/D1)(D1/D2); cf. (8.2)], which indicates that the tangential force is linearly
proportional to the size of co-ions as well. This ion-size dependence is similar to the
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Figure 4. Tangential electroviscous force versus ratio of diffusivity of counter-ions to co-ions
for ζp = ζW = −100 mV.

ion-size dependence of the electroviscous correction to the hydrodynamic drag for
motion normal to a surface (van de Ven 1988).

The dependence of the force (F ′
x in (8.1)) on ζ -potentials is illustrated in figure

5(a, b) for δ = 0.01, in figure 6(a, b) for δ = 0.001, in figure 7(a, b) for δ = 1 and
in figure 8 for δ = 100. At zero charge, there is no electric field, so that we do
not expect any electroviscous force to be experienced by the particle. As mentioned
before, the dependence of the force on ζ -potentials is nonlinear. Although in most
cases the force is negative, there are some ranges of ζ -potentials, shown in figure 6(b),
where the force is positive. For all figures, there is a symmetry property with respect
to ζ -potential. By reversing the signs of both particle and wall ζ -potentials, the
magnitude and sign of the force remain unaltered. This symmetry holds only for
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Figure 5. (a, b) Tangential electroviscous force versus wall zeta-potential for various particle
zeta potentials shown in the inset for particles and wall with charges of the same sign (a) and
opposite sign (b). δ = 0.01, S = 1.

identical diffusivity of ions (S = 1), as can easily be observed from formula (5.7) and
model (8.4). When the particle ζ -potential plays a major role in the contribution to
the force, the inner solution mispredicts the force dramatically, as can be observed
from the cases of ζP = ±2ζW and ζP = −ζW ; this gets worse as the difference between
the zeta potentials of the particle and wall increases.

From the above observations it can be concluded that, for small particle–wall
distances, although the orders of the force in δ and S of the inner solution agree
with those of the present solution, the force depends on the ζ -potentials (especially
particle ζ -potential) differently, which indicates that the inner solution, obtained by
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Figure 6. (a, b) Tangential electroviscous force versus wall zeta potential for
ζP = ζW , δ = 0.001 and S = 1. (b) is a magnified view of (a).

applying the lubrication theory, is inadequate for the electroviscous problems. For
hydrodynamics, the inner solution obtained by applying the lubrication theory has
been shown to yield a good approximation for the hydrodynamic force (O’Neill &
Stewartson 1967; Cooley & O’Neil 1968). This is because when the particle is very close
to the wall the flow is more intense (strong shear) in the vicinity of the nearby contact
point (inner region) than in the other parts of the field (outer region), so that most
of the contribution to the hydrodynamic force comes from the inner region and the
contribution from the outer region is negligibly small. But for the electrical problem,
because all parts of the sphere or the wall surface have the same zeta potential, the
intensity of the electric field in the vicinity of the solid surfaces for the inner and outer
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Figure 7. (a, b) Tangential electroviscous force versus wall zeta potential for various particle
zeta potentials, δ = 1, S = 1.

regions is similar. Therefore, the contribution of the electrostatics resulting from the
electric body forces acting on the liquid (cf. (2.5) and (2.8)) from the outer regions is
much larger than that of the inner region, considering that the domain of outer region
(in the vicinity of the solid surfaces) is much larger than that of the inner region.
Thus, the contribution to the stress arising from the electroviscous disturbance flow is
not mainly determined by the flow in the gap, and the contribution of the disturbance
flow from the outer region must be considered as well, although it is not an easy task
to obtain an outer region solution in a closed form to be able to match it onto the
inner solution expansion. Similar to the inner region, the expected contribution to the
force from the outer region can be either negative or positive. In the related problem
of the electrophoretic motion of a sphere near a wall (Keh & Anderson 1985) in



390 S. M. Tabatabaei and T. G. M. van de Ven

–10000

–8000

–6000

–4000

–2000

0

ζP = ±0.5ζW Analytic

ζP = ±0.5ζW Numeric

ζP = ±0.5ζW Ohshima

ζP = ±ζW Analytic

ζP = ±ζW Numeric

ζP = ±ζW Ohshima

ζP = ±2ζW Analytic

ζP = ±2ζW Numeric

ζP = ±2ζW Ohshima

–200 –100 0 100 200

ζW (mV)

F′
x

Figure 8. Tangential electroviscous force versus wall zeta potential for various particle zeta
potentials, δ = 100, S = 1.

which the tangential velocity U of the sphere is caused by an external electric field, the
validity of the lubrication theory was not tested. The theory provides an expansion in
δ−1 and is valid in the limit ∈ → 0, and no comparisons with complete or numerical
theories or with experiments were provided. Our theory is valid for all separation
distances and provides a solution up to O(∈4). In the limit ∈ → 0, all electroviscous
corrections vanish and the drag force is determined by hydrodynamics only.

As the particle–wall distance increases, the effect of the wall interaction diminishes,
resulting in a lower magnitude of the force, and hence at large distances from the wall,
the drag component becomes identical to the theory of Ohshima et al. (1984) for the
sedimentation of an isolated sphere in an unbounded fluid. Although, in most cases,
the tangential force is negative (superimposed on the hydrodynamic drag), there are
some situations in which it is zero or positive (a reduction in the drag), depending on
the combination of the wall and particle ζ -potentials and the ratio of the diffusivity
of ions. The tangential electroviscous force is linearly proportional to counter-ion
and co-ion sizes and to the viscosity of the medium. For small particle–wall distances
(δ � 1), a model is given by (8.4) which both represents physical insight and provides
an easy way to calculate the force with high precision.

Appendix A
The coefficients A, B, C, D, E, F and G of (3.14)–(3.17) for translation of the

particle are

[(2n − 1)kn−1 − (2n − 3)kn]

[
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2n − 1
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where

kn =

(
n +

1

2

)
coth

(
n +

1

2

)
α − cothα, (A 2)

Bn = − Lim
ξ=0

2 sinh
(
n + 1

2

)
ξ

sinh ξ

[
An − n + 2

2n + 3
An+1 − n − 1

2n − 1
An−1

]

− 2

[
n − 1

2n − 1
An−1 − n + 2

2n + 3
An+1

]
, n � 1, (A 3)

Cn = −2kn

[
n − 1

2n − 1
An−1 − An +

n + 2

2n + 3
An−1

]
, n � 1, (A 4)

Dn = − 1
2
(n − 1)nAn−1 + 1

2
(n + 1)(n + 2)An+1, n � 0, (A 5)

En =
2
√

2e−(n+ 1
2 )α

sinh
(
n + 1

2

)
α

+ kn

[
n(n − 1)

2n − 1
An−1 − (n + 1)(n + 2)

2n + 3
An+1

]
, n � 0, (A 6)

Fn = 1
2
(An−1 − An+1), n � 2, (A 7)

Gn = −kn

[
1

2n − 1
An−1 − 1

2n + 3
An+1

]
, n � 2. (A 8)

The (Vξ , Vθ , Vη) in the bipolar components of velocity given by (3.18) are determined
by

Vξ = −1
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Appendix B
Parameters M, N, S, T and O in relationship (4.18) are defined by
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and
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In view of the recurrence relationships (Macrobert 1967)
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the auxiliary functions M, S, T and O can be written in terms of just P ′
n with the

notation

Kn+i Sin = Kn+i sinh
(
n + i + 1

2

)
ξ, Kn+iCos = Kn+i cosh

(
n + i + 1

2

)
ξ, (B 9)

[K = (A, B, C, D, E, F, G)], as

M = − 2

∞∑
1

AnSinP ′
n + 2 cosh ξ

∞∑
1

[
An+1Sin

n + 2

2n + 3
+ An−1Sin

n − 1

2n − 1

]
P ′

n

+ sinh ξ

∞∑
1

[
(Bn+1Cos + Cn+1Sin)

n + 2

2n + 3
+ (Bn−1Cos + Cn−1Sin)

n − 1

2n − 1

]
P ′

n

+ sinh ξ

∞∑
1

[
(Dn+1Cos + En+1Sin)

−1

2n + 3
+ (Dn−1Cos + En−1Sin)

1

2n − 1

]
P ′

n

+ sinh ξ

∞∑
1

[
(Fn+1Cos + Gn+1Sin)

(n + 2)(n + 3)

2n + 3

− (Fn−1Cos + Gn−1Sin)
(n − 2)(n − 1)

2n − 1

]
P ′

n, (B 10)
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S = 2 cosh ξ

∞∑
1

[
An+1Sin

n + 2

2n + 3
+ An−1Sin

n − 1

2n − 1

]
P ′

n

+ sinh ξ

∞∑
1

[
(Bn+1Cos + Cn+1Sin)

n + 2

2n + 3
+ (Bn−1Cos + Cn−1Sin)

n − 1

2n − 1

]
P ′

n

+ sinh ξ

∞∑
1

[
(Dn+1Cos + En+1Sin)

−1

2n + 3
+ (Dn−1Cos + En−1Sin)

1

2n − 1

]
P ′

n

+ sinh ξ

∞∑
1

[
(Fn+1Cos + Gn+1Sin)

(n + 2)(n + 3)

2n + 3

− (Fn−1Cos + Gn−1Sin)
(n − 2)(n − 1)

2n − 1

]
P ′

n, (B 11)

T = sinh ξ

∞∑
1

[An+1Cos(n + 2) + An−1Cos(n − 1)]P ′
n

+
1

2
cosh ξ

∞∑
1

[(Bn+1Sin + Cn+1Cos)(n + 2) + (Bn−1Sin + Cn−1Cos)(n − 1)]P ′
n

+
1

2
cosh ξ

∞∑
1

[−(Dn+1Sin + En+1Cos) + (Dn−1Sin + En−1Cos)]P ′
n

+
1

2
cosh ξ

∞∑
1

[(Fn+1Sin + Gn+1Cos)(n + 2)(n + 3)

− (Fn−1Sin + Gn−1Cos)(n − 2)(n − 1)]P ′
n, (B 12)

O = − 2

∞∑
1

(
n +

1

2

)2

AnSinP ′
n + cosh ξ

∞∑
1

[
An+1Sin

(
n +

3

2

)
(n + 2)

+ An−1Sin

(
n − 1

2

)
(n − 1)

]
P ′

n +
1

2
sinh ξ

∞∑
1

[
(Bn+1Cos + Cn+1Sin)

(
n +

3

2

)

× (n + 2) + (Bn−1Cos + Cn−1Sin)

(
n − 1

2

)
(n − 1)

]
P ′

n

+
1

2
sinh ξ

∞∑
1

[
−(Dn+1Cos + En+1Sin)

(
n +

3

2

)
+ (Dn−1Cos + En−1Sin)

×
(

n − 1

2

)]
P ′

n +
1

2
sinh ξ

∞∑
1

[
(Fn+1Cos + Gn+1Sin)

(
n +

3

2

)
(n + 2)(n + 3)

− (n − 2)(n − 1)(Fn−1Cos + Gn−1Sin)

(
n − 1

2

)]
P ′

n. (B 13)
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The boundary condition on the sphere is the same as that for the wall, given by (4.18),
for which FcW is replaced by FcP and ξ is taken to be equal to α, that is

∂C21

∂ξ
= −FcP sin η

2c

{
N + (cosh ξ − µ)−3/2

[
1

4
sinh2 ξM

]
on ξ = α

+ (cosh ξ − µ)−1/2

[
−1

2
cosh ξM

]
+ (cosh ξ − µ)1/2[S + 2T + O]

}
. (B 14)

In view of the identity (Macrobert 1967)

(cosh ξ − µ)−1/2 = −2

n∑
1

λnP
′
n, (B 15)

where λn is defined by

λn = −
√

2

2

[
e−(n− 1

2 )α

2n − 1
− e−(n+ 3

2 )α

2n + 3

]
, (B 16)

the parameter N in (B 14) (the term due to the moving coordinate system), given by
(B 2), may be evaluated as

N = 2(1 − µ2) sinh ξ (cosh ξ − µ)−2

= − 4(1 − µ2) sinh ξ (cosh ξ − µ)−3/2

n∑
1

λnP
′
n

= − 4 sinh ξ (cosh ξ − µ)−3/2

{
n∑
1

λnP
′
n −

∞∑
1

[
n + 2

2n + 3

(
λn+2

n + 3

2n + 5
+ λn

n

2n + 1

)

+
n − 1

2n − 1

(
λn

n + 1

2n + 1
+ λn−2

n − 2

2n − 3

)]
P ′

n

}
. (B 17)

Thus, if we write

N = (cosh ξ − µ)−3/2

n∑
1

βnP
′
n, (B 18)

βn is determined by

βn = 4 sinh ξ

[
−λn +

n + 2

2n + 3

(
λn+2

n + 3

2n + 5
+ λn

n

2n + 1

)

+
n − 1

2n − 1

(
λn

n + 1

2n + 1
+ λn−2

n − 2

2n − 3

)]
, (B 19)

from which and from the identities

(cosh ξ − µ)−1/2P ′
n = (cosh ξ − µ)−3/2(cosh ξ − µ)P ′

n

= (cosh ξ − µ)−3/2

[
cosh ξP ′

n −
(

n + 1

2n + 1
P ′

n−1 +
n

2n + 1
P ′

n−1

)]
(B 20)
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and

(cosh ξ − µ)1/2P ′
n = (cosh ξ − µ)−1/2(cosh ξ − µ)P ′

n

= (cosh ξ − µ)−1/2

[
cosh ξP ′

n − n + 1

2n + 1
P ′

n−1 − n

2n + 1
P ′

n+1

]

= (cosh ξ − µ)−3/2

{
cosh2 ξP ′

n − cosh ξ

[
n + 1

2n + 1
P ′

n−1 +
n

2n + 1
P ′

n+1

]

+
(n + 1)n

(2n + 1)(2n − 1)
P ′

n−2 +

[
(n + 1)(n − 1)

(2n + 1)(2n − 1)
+

n(n + 2)

(2n + 1)(2n + 3)

]

× P ′
n +

n(n + 1)

(2n + 1)(2n + 3)
P ′

n+2

}
, (B 21)

boundary condition (B 14) may be written as

∂C21

∂ξ
= −FcP sin η

2c
(cosh ξ − µ)−3/2 on ξ = α

∞∑
1

[βn + γn + τ1n + τ2n + τ3n + ω1n + ω2n + ω3n + ω4n + ω5n + ω6n]P
′
n, (B 22)

in which γn, (τ1n, τ2n, τ3n) and (ω1n, ω2n, ω3n, ω4n, ω5n, ω6n) are obtained from the
second, third and the fourth terms in (B 14), upon the use of the identities
(B 7) and (B 8). They are given by (B 24)–(B 34).

Now, in view of (B 22) and (4.15) the equation for the set of In values is
determined:

(n − 2)(n − 1)

2n − 1
sinh

(
n − 3

2

)
αIn−2 − (n − 1)

[
sinhα

2n − 1
cosh

(
n − 1

2

)
α

+2 coshα sinh

(
n − 1

2

)
α

]
In−1 n � 1 +

{
1

2
sinh 2α cosh

(
n +

1

2

)
α

+

[
(2n + 1) cosh2 α +

(n + 1)(n − 1)

2n − 1
+

n(n + 2)

2n + 3

]
sinh

(
n +

1

2

)
α

}
In

− (n + 2)

[
sinhα

2n + 3
cosh

(
n +

3

2

)
α + 2 coshα sinh

(
n +

3

2

)
α

]
In+1

+
(n + 3)(n + 2)

2n + 3
sinh

(
n +

5

2

)
αIn+2

= −χn − FcP

c
[βn + γn + τ1n + τ2n + τ3n + ω1n + ω2n + ω3n + ω4n + ω5n + ω6n]ξ=α.

(B 23)
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The parameter βn is given by (B 19) and (B 16), and χn, γn, τ1n, τ2n, τ3n,

ω1n, ω2n, ω3n, ω4n, ω5n, ω6n with the notations given by (B 9) are determined by

χn =
(n − 2)(n − 1)

2n − 1
cosh

(
n − 3

2

)
αJn−2 − (n − 1)

[
sinhα

2n − 1
sinh

(
n − 1

2

)
α

+ coshα cosh

(
n − 1

2

)
α

]
Jn−1 +

{
1

2
sinh 2α sinh

(
n +

1

2

)
α

+

[
(2n + 1) cosh2 α +

(n + 1)(n − 1)

2n − 1
+

n(n + 2)

2n + 3

]
cosh

(
n +

1

2

)
α

}
Jn

− (n + 2)

[
sinhα

2n + 3
sinh

(
n +

3

2

)
α + coshα cosh

(
n +

3

2

)
α

]
Jn+1

+
(n + 3)(n + 2)

2n + 3
cosh

(
n +

5

2

)
αJn+2, (B 24)

γn = 4 sinh2 ξ

{
2AnSin + 2 cosh ξ

[
An+1Sin

n + 2

2n + 3
+ An−1Sin

n − 1

2n − 1

]

+ sinh ξ

[
(Bn+1Cos + Cn+1Sin)

n + 2

2n + 3
+ (Bn−1Cos + Cn−1Sin)

n − 1

2n − 1

]

+ sinh ξ

[
(Dn+1Cos + En+1Sin)

−1

2n + 3
+ (Dn−1Cos + En−1Sin)

1

2n − 1

]

+ sinh ξ

[
(Fn+1Cos + Gn+1Sin)

(n + 2)(n + 3)

2n + 3

− (Fn−1Cos + Gn−1Sin)
(n − 2)(n − 1)

2n − 1

]}
, (B 25)

τ1n = τ1a + τ1b, (B 26)

where

τ1a = cosh2 ξAnSin − cosh ξ (cosh2 ξ + sin2 hξ )

[
An+1Sin

n + 2

2n + 3
+ An−1Sin

n − 1

2n − 1

]

− sinh ξ cosh2 ξ

[
(Bn+1Cos + Cn+1Sin)

n + 2

2n + 3
+ (Bn−1Cos + Cn−1Sin)

n − 1

2n − 1

]

− sinh ξ cosh2 ξ

[
(Dn+1Cos + En+1Sin)

−1

2n + 3
+ (Dn−1Cos + En−1Sin)

1

2n − 1

]

− sinh ξ cosh2 ξ

[
(Fn+1Cos + Gn+1Sin)

(n + 2)(n + 3)

2n + 3

− (Fn−1Cos + Gn−1Sin)
(n − 2)(n − 1)

2n − 1

]
,
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τ1b =
1

2
sinh ξ cosh ξ

(
n +

1

2

)
AnCos − 1

2
sinh ξ cosh2 ξ [An+1Cos(n + 2)

+ An−1Cos(n − 1)] − 1

4
sinh2 ξ cosh ξ [(Bn+1Sin + Cn+1Cos)(n + 2) + (Bn−1Sin

+ Cn−1Cos)(n − 1)] − 1

4
sinh2 ξ cosh ξ [−(Dn+1Sin + En+1Cos) + (Dn−1Sin

+ En−1Cos)] − 1

4
sinh2 ξ cosh ξ [(Fn+1Sin + Gn+1Cos)(n + 2)(n + 3)

− (Fn−1Sin + Gn−1Cos)(n − 2)(n − 1)],

τ2n = − n − 1

2n − 1
[τ2a + τ2b], (B 27)

where

τ2a =

{
+ cosh ξAn+1Sin − (cosh2 ξ + sinh2 ξ )

[
An+2Sin

n + 3

2n + 5
+ AnSin

n

2n + 1

]

− sinh ξ cosh ξ

[
(Bn+2Cos + Cn+2Sin)

n + 3

2n + 5
+ (BnCos + CnSin)

n

2n + 1

]

− sinh ξ cosh ξ

[
(Dn+2Cos + En+2Sin)

−1

2n + 5
+ (DnCos + EnSin)

1

2n + 1

]

− sinh ξ cosh ξ

[
(Fn+2Cos + Gn+2Sin)

(n + 3)(n + 4)

2n + 5

− (FnCos + GnSin)
(n − 1)(n)

2n + 1

]
,

τ2b =
1

2
sinh ξ

(
n +

3

2

)
An+1Cos − 1

2
sinh ξ cosh ξ [An+2Cos(n + 3) + AnCos(n)]

− 1

4
sinh2 ξ [(Bn+2Sin + Cn+2Cos)(n + 3) + (BnSin + CnCos)(n)]

− 1

4
sinh2 ξ [−(Dn+2Sin + En+2Cos) + (DnSin + EnCos)]

− 1

4
sinh2 ξ [(Fn+2Sin + Gn+2Cos)(n + 3)(n + 4) − (FnSin + GnCos)(n − 1)(n)],

τ3n = − n − 1

2n − 1
[τ3a + τ3b], (B 28)

where

τ3a =

{
+ cosh ξAn−1Sin − (cosh2 ξ + sin2 hξ )

[
AnSin

n + 1

2n + 1
+ An−2Sin

n − 2

2n − 3

]

− sinh ξ cosh ξ

[
(BnCos + CnSin)

n + 1

2n + 1
+ (Bn−2Cos + Cn−2Sin)

n − 2

2n − 3

]
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− sinh ξ cosh ξ

[
(DnCos + EnSin)

−1

2n + 1
+ (Dn−2Cos + En−2Sin)

1

2n − 3

]

− sinh ξ cosh ξ

[
(FnCos + GnSin)

(n + 1)(n + 2)

2n + 1

− (Fn−2Cos + Gn−2Sin)
(n − 3)(n − 2)

2n − 3

]
,

τ3b =
1

2
sinh ξ

(
n − 1

2

)
An−1Cos − 1

2
sinh ξ cosh ξ [AnCos(n + 1) + An−2Cos(n − 2)]

− 1

4
sinh2 ξ [(BnSin + CnCos)(n + 1) + (Bn−2Sin + Cn−2Cos)(n − 2)]

− 1

4
sinh2 ξ [−(DnSin + EnCos) + (Dn−2Sin + En−2Cos)]

− 1

4
sinh2 ξ [(FnSin+ GnCos)(n+ 1)(n + 2) − (Fn−2Sin+ Gn−2Cos)(n − 3)(n − 2)],

ω1n = cosh2 ξ [ω1a + ω1b + ω1c], (B 29)

where

ω1a =

{
2 cosh ξ

[
An+1Sin

n + 2

2n + 3
+ An−1Sin

n − 1

2n − 1

]

+ sinh ξ

[
(Bn+1Cos + Cn+1Sin)

n + 2

2n + 3
+ (Bn−1Cos + Cn−1Sin)

n − 1

2n − 1

]

+ sinh ξ

[
(Dn+1Cos + En+1Sin)

−1

2n + 3
+ (Dn−1Cos + En−1Sin)

1

2n − 1

]

+ sinh ξ

[
(Fn+1Cos + Gn+1Sin)

(n + 2)(n + 3)

2n + 3

− (Fn−1Cos + Gn−1Sin)
(n − 2)(n − 1)

2n − 1

]
+ 2 sinh ξ [An+1Cos(n + 2) + An−1Cos(n − 1)],

ω1b = cosh ξ [(Bn+1Sin + Cn+1Cos)(n + 2) + (Bn−1Sin + Cn−1Cos)(n − 1)]

+ cosh ξ [−(Dn+1Sin + En+1Cos) + (Dn−1Sin + En−1Cos)] + cosh ξ [(Fn+1Sin

+ Gn+1Cos)(n + 2)(n + 3) − (Fn−1Sin + Gn−1Cos)(n − 2)(n − 1)]

− 2

(
n +

1

2

)2

AnSin + cosh ξ

[
An+1Sin

(
n +

3

2

)
(n + 2)

+An−1Sin

(
n − 1

2

)
(n − 1)

]
,

ω1c =
1

2
sinh ξ

[
(Bn+1Cos + Cn+1Sin)

(
n +

3

2

)
(n + 2) + (Bn−1Cos + Cn−1Sin)

(
n − 1

2

)

× (n − 1)

]
+

1

2
sinh ξ

[
− (Dn+1Cos + En+1Sin)

(
n +

3

2

)
+ (Dn−1Cos + En−1Sin)
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×
(

n − 1

2

)]
+

1

2
sinh ξ

[
(Fn+1Cos + Gn+1Sin)

(
n +

3

2

)
(n + 2)(n + 3)

− (Fn−1Cos + Gn−1Sin)

(
n − 1

2

)
(n − 2)(n − 1)

]
,

ω2n = − cosh ξ
n + 2

2n + 3
[ω2a + ω2b + ω2c], (B 30)

where

ω2a = 2 cosh ξ

[
An+2Sin

n + 3

2n + 5
+ AnSin

n

2n + 1

]

+ sinh ξ

[
(Bn+2Cos + Cn+2Sin)

n + 3

2n + 5
+ (BnCos + CnSin)

n

2n + 1

]

+ sinh ξ

[
(Dn+2Cos + En+2Sin)

−1

2n + 5
+ (DnCos + EnSin)

1

2n + 1

]

+ sinh ξ

[
(Fn+2Cos + Gn+2Sin)

(n + 3)(n + 4)

2n + 5
− (FnCos + GnSin)

(n − 1)(n)

2n + 1

]
+ 2 sinh ξ [An+2Cos(n + 3) + AnCos(n)] + cosh ξ [−(Dn+2Sin + En+2Cos)

+ (DnSin + EnCos)],

ω2b = cosh ξ [(Bn+2Sin + Cn+2Cos)(n + 3) + (BnSin + CnCos)(n)]

+ cosh ξ [(Fn+2Sin + Gn+2Cos)(n + 3)(n + 4) − (FnSin + GnCos)(n − 1)(n)]

− 2

(
n +

3

2

)2

An+1Sin + cosh ξ

[
An+2Sin

(
n +

5

2

)
(n + 3) + AnSin

(
n +

1

2

)
(n)

]
,

ω2c =
1

2
sinh ξ

[
(Bn+2Cos + Cn+2Sin)

(
n +

5

2

)
(n + 3) + (BnCos + CnSin)

(
n +

1

2

)
(n)

]

+
1

2
sinh ξ

[
−(Dn+2Cos + En+2Sin)

(
n +

5

2

)
+ (DnCos + EnSin)

(
n +

1

2

)]

+
1

2
sinh ξ

[
(Fn+2Cos + Gn+2Sin)

(
n +

5

2

)
(n + 3)(n + 4) − (FnCos + GnSin)

×
(

n +
1

2

)
(n − 1)(n)

]
,

ω3n = − cosh ξ
n − 1

2n − 1
[ω3a + ω3b + ω3c], (B 31)

where

ω3a =

{
2 cosh ξ

[
AnSin

n + 1

2n + 1
+ An−2Sin

n − 2

2n − 3

]

+ sinh ξ

[
(BnCos + CnSin)

n + 1

2n + 1
+ (Bn−2Cos + Cn−2Sin)

n − 2

2n − 3

]
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+ sinh ξ

[
(DnCos + EnSin)

−1

2n + 1
+ (Dn−2Cos + En−2Sin)

1

2n − 3

]

+ sinh ξ

[
(FnCos + GnSin)

(n + 1)(n + 2)

2n + 1
− (Fn−2Cos + Gn−2Sin)

(n − 3)(n − 2)

2n − 3

]
+2 sinh ξ [AnCos(n + 1) + An−2Cos(n − 2)],

ω3b = cosh ξ [(BnSin + CnCos)(n + 1) + (Bn−2Sin + Cn−2Cos)(n − 2)]

+ cosh ξ [−(DnSin + EnCos) + (Dn−2Sin + En−2Cos)]

+ cosh ξ [(FnSin + GnCos)(n + 1)(n + 2) − (Fn−2Sin + Gn−2Cos)(n − 3)(n − 2)]

− 2

(
n − 1

2

)2

An−1Sin + cosh ξ

[
AnSin

(
n +

1

2

)
(n + 1) + An−2Sin

(
n − 3

2

)
(n − 2)

]
,

ω3c =
1

2
sinh ξ

[
(BnCos + CnSin)

(
n+

1

2

)
(n+1) + (Bn−2Cos + Cn−2Sin)

(
n − 3

2

)
(n − 2)

]

+
1

2
sinh ξ

[
−(DnCos + EnSin)

(
n +

1

2

)
+ (Dn−2Cos + En−2Sin)

(
n − 3

2

)]

+
1

2
sinh ξ

[
(FnCos + GnSin)

(
n +

1

2

)
(n + 1)(n + 2) − (Fn−2Cos + Gn−2Sin)

×
(

n − 3

2

)
(n − 3)(n − 2)

]
,

ω4n =
(n + 3)(n + 2)

(2n + 5)(2n + 3)
[ω4a + ω4b + ω4c], (B 32)

where

ω4a =

{
2 cosh ξ

[
An+3Sin

n + 4

2n + 7
+ An+1Sin

n + 1

2n + 3

]

+ sinh ξ

[
(Bn+3Cos + Cn+3Sin)

n + 4

2n + 7
+ (Bn+1Cos + Cn+1Sin)

n + 1

2n + 3

]

+ sinh ξ

[
(Dn+3Cos + En+3Sin)

−1

2n + 7
+ (Dn+1Cos + En+1Sin)

1

2n + 3

]

+ sinh ξ

[
(Fn+3Cos + Gn+3Sin)

(n + 4)(n + 5)

2n + 7
− (Fn+1Cos + Gn+1Sin)

(n)(n + 1)

2n + 3

]
+ 2 sinh ξ [An+3Cos(n + 4) + An+1Cos(n + 1)] ,

ω4b = cosh ξ [(Bn+3Sin + Cn+3Cos)(n + 4) + (Bn+1Sin + Cn+1Cos)(n + 1)]

+ cosh ξ [−(Dn+3Sin + En+3Cos) + (Dn+1Sin + En+1Cos)]

+ cosh ξ [(Fn+3Sin + Gn+3Cos)(n + 4)(n + 5) − (Fn+1Sin + Gn+1Cos)(n)(n + 1)]

− 2

(
n +

5

2

)2

An+2Sin + cosh ξ

[
An+3Sin

(
n +

7

2

)
(n + 4)

+ An+1Sin

(
n +

3

2

)
(n + 1)

]
,
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ω4c =
1

2
sinh ξ

[
(Bn+3Cos + Cn+3Sin)

(
n +

7

2

)
(n + 4) + (Bn+1Cos + Cn+1Sin)

(
n +

3

2

)

× (n + 1)

]
+

1

2
sinh ξ

[
− (Dn+3Cos + En+3Sin)

(
n +

7

2

)
+ (Dn+1Cos + En+1Sin)

×
(

n +
3

2

)]
+

1

2
sinh ξ

[
(Fn+3Cos + Gn+3Sin)

(
n +

7

2

)
(n + 4)(n + 5)

− (Fn+1Cos + Gn+1Sin)

(
n +

3

2

)
(n)(n + 1)

]
,

ω5n =

[
(n + 1)(n − 1)

(2n + 1)(2n − 1)
+

(n)(n + 2)

(2n + 1)(2n + 3)

]
[ω5a + ω5b + ω5c], (B 33)

where

ω5a =

{
2 cosh ξ

[
An+1Sin

n + 2

2n + 3
+ An−1Sin

n − 1

2n − 1

]

+ sinh ξ

[
(Bn+1Cos + Cn+1Sin)

n + 2

2n + 3
+ (Bn−1Cos + Cn−1Sin)

n − 1

2n − 1

]

+ sinh ξ

[
(Dn+1Cos + En+1Sin)

−1

2n + 3
+ (Dn−1Cos + En−1Sin)

1

2n − 1

]

+ sinh ξ

[
(Fn+1Cos+Gn+1Sin)

(n+2)(n+3)

2n + 3
− (Fn−1Cos+Gn−1Sin)

(n − 2)(n − 1)

2n − 1

]
+ 2 sinh ξ [An+1Cos(n + 2) + An−1Cos(n − 1)],

ω5b = cosh ξ [(Bn+1Sin + Cn+1Cos)(n + 2) + (Bn−1Sin + Cn−1Cos)(n − 1)]

+ cosh ξ [−(Dn+1Sin + En+1Cos) + (Dn−1Sin + En−1Cos)] + cosh ξ [(Fn+1Sin

+ Gn+1Cos)(n + 2)(n + 3) − (Fn−1Sin + Gn−1Cos)(n − 2)(n − 1)] − 2

(
n +

1

2

)2

× AnSin + cosh ξ

[
An+1Sin

(
n +

3

2

)
(n + 2) + An−1Sin

(
n − 1

2

)
(n − 1)

]
,

ω5c =
1

2
sinh ξ

[
(Bn+1Cos + Cn+1Sin)

(
n +

3

2

)
(n + 2) + (Bn−1Cos + Cn−1Sin)

(
n − 1

2

)

× (n − 1)

]
+

1

2
sinh ξ

[
− (Dn+1Cos + En+1Sin)

(
n +

3

2

)
+ (Dn−1Cos + En−1Sin)

×
(

n − 1

2

)]
+

1

2
sinh ξ

[
(Fn+1Cos + Gn+1Sin)

(
n +

3

2

)
(n + 2)(n + 3)

− (Fn−1Cos + Gn−1Sin)

(
n − 1

2

)
(n − 2)(n − 1)

]
,

ω6n =
(n − 2)(n − 1)

(2n − 3)(2n − 1)
[ω6a + ω6b + ω6c], (B 34)
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where

ω6a =

{
2 cosh ξ

[
An−1Sin

n

2n − 1
+ An−3Sin

n − 3

2n − 5

]

+ sinh ξ

[
(Bn−1Cos + Cn−1Sin)

n

2n − 1
+ (Bn−3Cos + Cn−3Sin)

n − 3

2n − 5

]

+ sinh ξ

[
(Dn−1Cos + En−1Sin)

−1

2n − 1
+ (Dn−3Cos + En−3Sin)

1

2n − 5

]

+ sinh ξ

[
(Fn−1Cos + Gn−1Sin)

(n)(n + 1)

2n − 1
− (Fn−3Cos + Gn−3Sin)

(n − 4)(n − 3)

2n − 5

]
+ 2 sinh ξ [An−1Cos(n) + An−3Cos(n − 3)],

ω6b = cosh ξ [(Bn−1Sin + Cn−1Cos)(n) + (Bn−3Sin + Cn−3Cos)(n − 3)]

+ cosh ξ [−(Dn−1Sin + En−1Cos) + (Dn−3Sin + En−3Cos)]

+ cosh ξ [(Fn−1Sin + Gn−1Cos)(n)(n + 1) − (Fn−3Sin + Gn−3Cos)(n − 4)(n − 3)]

− 2

(
n − 3

2

)2

An−2Sin +cosh ξ

[
An−1Sin

(
n − 1

2

)
(n) + An−3Sin

(
n − 5

2

)
(n − 3)

]
,

ω6c =
1

2
sinh ξ

[
(Bn−1Cos + Cn−1Sin)

(
n − 1

2

)
(n)+(Bn−3Cos + Cn−3Sin)

(
n − 5

2

)
(n−3)

]

+
1

2
sinh ξ

[
−(Dn−1Cos + En−1Sin)

(
n − 1

2

)
+ (Dn−3Cos + En−3Sin)

(
n − 5

2

)]

+
1

2
sinh ξ

[
(Fn−1Cos + Gn−1Sin)

(
n − 1

2

)
(n)(n + 1) − (Fn−3Cos + Gn−3Sin)

×
(

n − 5

2

)
(n − 4)(n − 3)

]
.

Appendix C
The parameters σξηA, σξηBC, σξηDE, σξηFG in relation (7.18a) and σξθA,σθPBC,

σξθPDE, σξθFG in relation (7.18b) are defined by

σξηA = (cosh ξ − µ)−1/2[−3µ3 cosh ξ + µ2 cosh2 ξ + 4µ2 − µ cosh ξ + sinh2 ξ − 1]

×
∞∑
1

An sinh

(
n +

1

2

)
ξP ′

n + (cosh ξ − µ)1/2
[
2 sin2 η(1 − µ cosh ξ )

∞∑
1

An

× sinh

(
n +

1

2

)
ξP ′′

n + (1 − µ2) sinh ξ

∞∑
1

(2n+ 1)An cosh

(
n+

1

2

)
ξP ′

n

]
, (C 1)

σξηBC =
1

2
sinh ξ (cosh ξ − µ)−1/2[−5µ3 + 2µ2 cosh ξ + µ + cosh ξ ]

×
∞∑
1

[
Bn cosh

(
n +

1

2

)
ξ + Cn sinh

(
n +

1

2

)
ξ

]
P ′

n + (cosh ξ − µ)1/2
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×
{

−µ sin2 η sinh ξ

∞∑
1

[
Bn cosh

(
n+

1

2

)
ξ + Cn sinh

(
n +

1

2

)
ξ

]
P ′′

n + (1−µ2)

× cosh ξ

∞∑
1

(
n +

1

2

)[
Bn sinh

(
n +

1

2

)
ξ + Cn cosh

(
n +

1

2

)
ξ

]
P ′

n

}
, (C 2)

σξηDE =
1

2
sinh ξ (cosh ξ − µ)−1/2[−µ2 − µ cosh ξ + 2]

∞∑
0

[
Dn cosh

(
n +

1

2

)
ξ

+ En sinh

(
n +

1

2

)
ξ

]
Pn + (cosh ξ − µ)1/2

{
− sin η2 sinh ξ

×
∞∑
1

[
Dn cosh

(
n +

1

2

)
ξ + En sinh

(
n +

1

2

)
ξ

]
P ′

n + (1 − µ cosh ξ )

×
∞∑
0

(
n +

1

2

)[
Dn sinh

(
n +

1

2

)
ξ + En cosh

(
n +

1

2

)
ξ

]
Pn

}
, (C 3)

σξηGF =
1

2
sinh ξ (cosh ξ − µ)−1/2[−5µ2 + 3µ cosh ξ + 2]

∞∑
2

[
Fn cosh

(
n +

1

2

)
ξ

+ Gn sinh

(
n +

1

2

)
ξ

]
P ′′

n + (cosh ξ − µ)1/2
{

− (1 − µ2) sin2 η sinh ξ

×
∞∑
2

[
Fn cosh

(
n+

1

2

)
ξ + Gn sinh

(
n +

1

2

)
ξ

]
P ′′′

n + (1 − µ2)(1 − µ cosh ξ )

×
∞∑
2

(
n +

1

2

) [
Fn sinh

(
n +

1

2

)
ξ + Gn cosh

(
n +

1

2

)
ξ

]
Pn

}
, (C 4)

σξθA = −2(cosh ξ − µ)1/2(1 − µ cosh ξ )

∞∑
1

An sinh

(
n +

1

2

)
ξP ′

n, (C 5)

σξθBC = (cosh ξ − µ)1/2µ sinh ξ

∞∑
1

[
Bn cosh

(
n +

1

2

)
ξ + Cn sinh

(
n +

1

2

)
ξ

]
P ′

n,

(C 6)

σξθDE = −1

2
sinh ξ (cosh ξ − µ)1/2

∞∑
0

[
Dn cosh

(
n +

1

2

)
ξ + En sinh

(
n +

1

2

)
ξ

]
Pn

− (cosh ξ − µ)3/2

∞∑
0

(
n +

1

2

)[
Dn sinh

(
n +

1

2

)
ξ+En cosh

(
n +

1

2

)
ξ

]
Pn,

(C 7)
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σξθFG =
5

2
(1 − µ2) sinh ξ (cosh ξ − µ)1/2

∞∑
2

[
Fn cosh

(
n +

1

2

)
ξ

+ Gn sinh

(
n +

1

2

)
ξ

]
P ′′

n + (1 − µ2)(cosh ξ − µ)3/2
∞∑
2

(
n +

1

2

)

×
[
Fn sinh

(
n +

1

2

)
ξ + Gn cosh

(
n +

1

2

)
ξ

]
P ′′

n . (C 8)
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Helmholtz, H. V. 1879 Über electrische Grenzschichten. Wied. Ann. 7, 337–382.

Hinch, E. J. & Sherwood, J. D. 1983 The primary electroviscous effect in a suspension of spheres
with thin double layers. J. Fluid Mech. 132, 337–347.

Jeffery, G. B. 1912 On a form of the solution of Laplace’s equation suitable for problems relating
to two spheres. Proc. R. Soc. A 87, 109–120.

Keh, H. J. & Anderson, J. L. 1985 Boundary effects on electrophoretic motion of colloidal spheres.
J . Fluid Mech. 153, 417–439.

Krasny-Ergen, W. 1936 Untersuchungen über die Viskosität von Suspensionen und Lösungen. 2.
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